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Abstract

In the thesis we investigate the local and global existence of regular solutions to Kol-
mogorov’s two-equation model of turbulence. The local existence results are obtained for
the initial data with different assumptions on their regularity. First, the periodic domain
is considered with initial data from H2. Secondly, the existence of solutions is shown for
torus and data from H?®, s > g. Obtained solutions are unique. The proof of the existence
requires the commutator estimate for the Bessel potential J*°, which is adapted from a
well-known result for RY. The global existence of a regular solution is shown under a
smallness condition imposed on the initial data. The condition is formulated in such a

way to ensure the absorption of high-order terms by the diffusive terms.

Keywords: Kolmogorov’s model of turbulence, existence of solution, uniqueness of solu-

tion, local in time existence, fractional Sobolev spaces, commutator estimates






Streszczenie

W pracy zbadano istnienie lokalnych i globalnych w czasie, regularnych rozwigzan
dwuréwnaniowego modelu turbulencji Kotmogorowa. Istnienie lokalnych w czasie reg-
ularnych rozwiazan jest pokazane przy roéznych zalozeniach na regularno$é¢ danych
poczatkowych. Najpierw pokazane jest istnienie rozwigzan na periodycznej dziedzinie
i danych poczatkowych z przestrzeni H2. Nastepnie udowodnione zostaje istnienie
rozwigzan na torusie z danymi poczatkowymi pochodzacymi z przestrzeni H?, gdzie s > g.
Przeprowadzany dowod wymaga oszacowania komutatora dla potencjatu Bessela. Wynik
ten, dobrze znany dla przypadku R? jest pokazany dla przypadku torusa. Istnienie
globalnych w czasie, regularnych rozwigzan jest pokazane przy dodatkowym zalozeniu
na matos¢ danych poczatkowych. Warunek dobrany jest tak by gwarantowacé absorpcje

wyrazow wyzszych rzedéw przez czton dyfuzyjny.

Stowa kluczowe: model turbulencji Kotmogorowa, istnienie rozwiazan, jednoznacznosé
rozwigzan, lokalne w czasie rozwiazania, utamkowe przestrzenie Sobolewa, oszacowania

komutatorow
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Introduction

The flow of the fluid can be described using various partial differential equations
such as the Navier-Stokes, Fuler and Stokes systems. In the engineering practice, the
most commonly used model is one given by the Navier-Stokes equations. In the basic
form, the model describes the flow of a viscous, incompressible, isothermal fluid with
constant density. The Navier-Stokes equations have been extensively studied both from
the theoretical and numerical sides. The theoretical research concentrates on establishing
or disproving the regularity /uniqueness of solutions to the Navier-Stokes system. So far
the problem remains open. On the other hand, the numerical research shows that fluid
flows characterised by high Reynold’s number (turbulent flow) are difficult to simulate.
The difficulty arises from the fact that a turbulent flow is characterised by chaotic fluc-
tuations of the velocity and pressure fields. Thus to simulate the fluid flow properly
the computational mesh should be very fine and the simulation’s time-step very small
(see [52]). For example, the simulation of the planar turbulent channel with Reynold’s
number 10 000 would require 50 million CPU-hours (see [40] and [24]). Those difficulties
with the Navier-Stokes equations motivate the exploration of alternative formulations of
hydrodynamics.

In 1941 A. N. Kolmogorov in [27] proposed the following system of equations describing
the flow of the turbulent fluid:

vy +div(v ®v) — vy div <2D(v)> = —Vp, (1)
w
wt + div(wv) — Ky div (EVu}> = —kow?, (2)
w

by + div(bv) — ks div (éVb> = —bw + H4E|D(U)|2a (3)
w w



CHAPTER 0. INTRODUCTION

dive = 0, (4)

where D - denotes the symmetric gradient, v - the mean velocity field, b - 2/3 of the mean
turbulent kinetic energy, w - the dissipation rate of the mean turbulent kinetic energy
(also referred to as the scale of turbulence), p - the sum of the pressure and b. The
constants vy, k1, Ko, K3, k4 are given positive material parameters. The equations are

equipped with the initial conditions
V=0 = Vo, Wjt=0 = Wo, Dji=0 = bo (5)

and boundary conditions, which will be established later. In considering the Navier-Stokes
system difficulties arise due to high oscillations. The main idea behind the formulation
is to consider a smoothen-out (averaged) velocity field. However, to account for an infor-
mation lost (about the instantaneous velocity V' and the instantaneous pressure P) due
to the averaging process, additional quantities have to be introduced. Instead of tracking
the fluctuation’s velocity v' = V' — v directly, the mean kinetic energy of v' (i.e. the mean
turbulent kinetic energy) is considered. Additionally, the proposed model introduces the
dissipation rate, which accounts for the transfer of the turbulent kinetic energy into the
internal thermal energy. We see that the increase of the kinetic energy causes an increase
of the artificial (turbulent) viscosity 2. It is known from the theory of the Navier-Stokes
equation that a larger viscosity lengthens the existence time of regular solutions. Such an
artificial viscosity also improves the numerical properties of the equation.

Nowadays, the ideas introduced by Kolmogorov are used in the development of new
turbulence models such as k —¢, and k —w (see [12], [48], [10], [51]). Each of these models
is based on some artificial viscosity dependent on other mean flow quantities. These
turbulence models are inherently prone to inaccuracies due to the introduced averaging.
Thus based on the application, the choice of the turbulence model can significantly affect
the prediction. To understand the averaging process better, we will provide the derivation
of a part of Kolmogorov’s system from the Euler equations. Let us note that the used
procedure can also be applied for viscous flows i.e. such described by the Navier-Stokes
equations.

The simplest idea that would decrease the apparent fluctuations of solutions is to

consider the average value of the velocity and of the pressure. This is the case in Kol-
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mogorov’s approach. To this end let us introduce averaging operator f — f. Now, let us

decompose the flow’s velocity V' and the pressure P in the following way:
V(x,t) =v(z,t) + ' (z,t), P(z,t)=pz,t)+p(z,t),

where v, p are the time-averaged values and v/, p’ account for fluctuations around mean

values. We additionally require the following conditions to hold:

U=, Uz(), ﬁzp, FzO.

We substitute the decomposed functions into the Euler system and we get (for details see

chapter 2 of [51]):
(v +0v)+div((v+v)® (v +v))+ V(@ +p)=0.
By applying the average operator to the equation we obtain
o +div(v®v) + Vi = —div (v @ V).

The last term on the right-hand side can be approximated by the Boussinesq approxima-
tion (see [51])
'@V = vp(Vu + V) —bl,

where v denotes the turbulent viscosity. In the considered case of Kolmogorov’s system

we set vp = ”30% Finally, we obtain
. . [0
o+ div (v ®v) — 1y div (—Dv) +Vp =0, (6)
w

where p = p+b. This way we derived equation (1) based on the Euler equation. However,
we see that to close the system we need to introduce additional equations for w and b.
The derivation of equations (2), (3) is more complicated and requires additional postulates
besides the Boussinesq approximation. For further details see [51] and [48].

Recently, the research concerning the mathematical analysis of Kolmogorov’s model

has accelerated. In [8] authors showed the existence of a weak solution to Kolmogorov’s

13
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turbulence model. Tt relies on the introduction of a new variable £ = |v|?/2+b representing
the total energy in the system. It allows for the replacement of b-equation with an equation

depending on E:

b b 2
O F + div(v(E + p)) — 21y div (I{iVb + —D(v)v) + Dpy = 0.

RqW w K4

The main benefit of E—equation lies in the absence of 2|D(v)|* term, which enables
passage to the limit with the approximate solution. Additionally, it is worth of noting
that the developed methodology allows for by such that: by > 0 and Inby € L(Q).
In the article [36] the authors consider the system (1)-(4) in a periodic domain. The
authors first consider the approximate problem with an additional p-Laplacian term.
This allows for deriving additional estimates for the symmetric gradient of solutions.
After passing to the limit the authors obtain a global-in-time weak solution. However,
due to the presence of the strongly nonlinear term 2|D(v)[?, the weak form of equation
(3) has to be corrected by a positive measure p. The assumption on the initial value
of b is that it has to be uniformly positive. In [16] the authors consider the 1D system
motivated by Kolmogorov’s system structure (with the omitted pressure term). The
system of equations is considered in the periodic setting. First, the authors prove the
local-in-time existence of solutions for the initial data such that (vg,wg,bo) € H?, by = 0,
vbo € H? and wy is strictly positive. This choice of initial data means that the diffusion
coefficient may vanish. Also, they prove the existence of a class of smooth initial data,
for which a finite-time blow-up occurs. More precisely, the blow-up occurs in a finite time
provided: by(0) = 0, vy is odd with respect to 0, wy and by are even with respect to 0,
0.v0(0) < 0 and /by € H3. In [17] the authors continue the work from [16] however for the
modified (yet still relevant to the analysis of Kolmogorov’s model) system of equations.
The authors prove additional conditions which cause the blow-up in a finite time. These
conditions include the second derivative of turbulent kinetic energy. There are also some
developments regarding the theoretical analysis of other turbulence models, however less
fruitful (in terms of an obtained regularity) due to mathematically less advantageous
structure of equations: [33], [13], [15], [14], [38], [35].

The aim of the thesis is to show the existence of the regular solutions to Kolmogorov’s
two-equation model of turbulence. First, we show the existence of a regular solution in a

small time interval. The obtained solution’s norms may potentially blow up after a certain
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finite time. The minimal existence time of the solution is determined by the initial data
and the model’s parameters. The local-in-time existence is studied in two settings: for
initial data from the space H? and from H*®. In the second case, we have to assume that
initial data are regular enough i.e. s > %l. We also prove that the obtained solutions are
unique. The second part of the thesis concentrates on showing the existence of (nontrivial)
global-in-time solutions under the smallness condition imposed on the initial data. The
additional condition’s purpose is to ensure the absorption of higher-order terms by the
diffusive term. It is worth noting that the regularity analysis of Kolmogorov’s system was
not considered in the literature.

The thesis is comprised of 5 chapters. Now we will give a brief description of the
contents of each chapter. Chapter 1 provides an information about function spaces, that
will be used throughout the thesis. Additionally, certain useful, yet simple estimates are
provided. In Chapter 2 the local-in-time-existence of a solution is studied for the initial
data from the space H?. The detailed result is formulated in Theorem 2.1.1. The result
is then used in the next chapter. In Chapter 3 the existence of global in time, regular
solutions is shown under a smallness condition imposed on initial data. The basic idea
behind the considerations is to show that with the help of the smallness condition, the
solutions (provided by results from Chapter 2) can be extended indefinitely in time. In
Chapter 4, a local-in-time-existence of the solution is proven for initial data from H*(T?),
where s > %l. Also, it is shown that such solutions are unique. These results improve
the result given in Chapter 2. Also to obtain the existence result, Appendix contents
are utilised. In Chapter 5 the existence of global weak solutions on the torus is shown.
The main purpose of this chapter is to provide a better understanding of the approach
presented in [8]. The Appendix concentrates on adapting a proof of a commutator estimate

presented in [26] for the case of the torus. Finally, in the Summary, the conclusions are

formulated as well as possible directions for a continuation of work on the subject.
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Chapter 1

Function spaces and auxiliary lemmas

In this chapter, we introduce the notation used throughout the thesis. Additionally,
the basic inequalities are also given.

Let Q be a domain (to be specified in each chapter), T > 0 and Q7 = Q x (0,T). Let
(X, |]l) be a Banach space and 1 < p < oo. Throughout the thesis, we will denote the
Bochner space by LP(0,7T; X). The space is equipped with the following norm

1
T P
M (f u(t)||§<dt> for 1< p <o,
0

||U||Lw(o,T;X) 1= 88 SuPyepo 7y [u(t) x -

Moreover, the space of continuous functions from [0,7] to X will be denoted by

C([0,T]; X). The space is equipped with the following norm

= t .
HUHC([O,T];X) tg[l(%(] lu(t)] x

Let us consider f : R? — R. By V*f we denote the k-dimensional matrix comprised
of elements -2, where ki = 0fori=1,..dand Zle k; = k. Based on this we

ok1 xl...akdl‘d )
define

or P

) oF1xy.. .0k,

)

L2(Q)

HkaHi?(Q) - 2

where Sy = {(ky, ..., kq) e N¢ Zfil ki = k}.



CHAPTER 1. FUNCTION SPACES AND AUXILIARY LEMMAS

1.1. Function spaces on IT?_;(0, L;)
Let Q =113_,(0, L;), 7 = 1 and k € N. By W*"(Q) we denote the space of restrictions

to €2 of the functions, which belong to the space

{ue WIM(RY) : wu(-+ kLie;) = u(-) for keZ, i=1,2 3},

loc

where {e;}?_; forms the standard basis in R*. We shall denote by | - |52 the norm in the

Sobolev space, i.e.

£z = (IVEF15 + 1713)2, (1.1)

where || - |5 is L? norm on €. Additionally, we define W3’ (2) in the following way:

Wir(Q) = {ve [I/V”(Q)]3 . dive =01in Q, f vdx = 0}.
Q

Dual spaces of W' and W;f: will be denoted, respectively, in the following way:

/ *

WH(Q) = (W(Q)", Wy (@)= (War ()

where L + L = 1. Let 1 < p < c0. By Il and [-[, ,, we denote classical norms in LP(2)

P
b))

and WHP(Q), respectively:

|=

1 3
171, = ([ ra)” i, - (fH§+Z!8xif

Now, we define the following transformation:
Gy W W SR

such that for f € W=17(Q) and g € W (), where % + % = 1, we have

{frg) = f(g).

Thus, we can define the norm in dual spaces of Sobolev spaces:

1l = sup [<F @l

1,0 . —
@GW " (Q)'”LIDHWI,T,(Q) 1

18



1.1. FUNCTION SPACES ON II3_, (0, L;)

Also, for f € L"(Q) and g € L' (Q), where %4— % = 1, we define (-, -) in the following way:

(f.9) = JQ f(z)g(x)dz.

Additionally, we define the space

I-ll2

L3 () = Wi ()

where the right-hand side denotes the closure of the space Wy2(Q) in L?(€) norm. More-

over, let

LHQ) = fve I/(Q) - L vdz — 0},

Finally, we define the space that will be useful for considerations related to the kinetic

turbulent energy b:

e={beL”(0,T,L'(Q)) : b > 0 almost everywhere in Q" 12)
1.2
Inbe L*(0,T,L*()),be L*0,T,W'(Q)) VAe[1,2)}.

If m € N, then by V™ we denote the space of restrictions to €2 of the functions, which

belong to the space
{ue H™ (R*) : u(-+ kLie;) = u(-) for keZ, i=1,2,3}, (1.3)
where {e;}?_; form a standard basis in R®. Also we define
Ve —{veV™: dive =0, L vdr = 0}. (1.4)
For the convenience we also introduce the following space

X(T) = L*(0,T; V3,) x L*0,T;V?*) x (L*(0,T;V*) n (H'(0,T; H'(Q)))°. (1.5)

19



CHAPTER 1. FUNCTION SPACES AND AUXILIARY LEMMAS

1.1.1. The Gagliardo-Nireberg inequalities

In this subsection, we collect the special cases of the Gagliardo-Nirenberg inequalities
used in the paper (for the original formulation and proof see [20], [39], [18]). Here, the
constant ¢ depends only on 2 and we assume that f is a periodic function on €2, it is

sufficiently regular to make the right-hand side finite. Firstly, we recall

IVFIE<clV L [Vf],- (1.6)

The lower order term (say, L? norm) can be omitted, because §, V fdz = 0, §, V2 fdz =0

and from the Poincaré inequality for functions with the vanishing mean we get

IVFI3 = IV IV flly < CLIV L [V2E], < C2 IV £, V3]

2

where C', C5 depends only on Poincaré constant for €2. Next, we have

IfI2<c|9fl,1fl,. it f fde =0, (1.7)
Q

Ifls < |V fl,, it ffdrc:o, (1.8)
Q

IVFIE < c|[V3F, IV £, (1.9)

IV < |V, IV £l (1.10)

£l < c([921], + 110, (1.11)

1], < |V, if ffdx:o, (1.12)
Q

1715 < eIV A5 A3 + el f 1, (1.13)

where ¢ depends only on 2.

1.2. Function spaces on R

Now we will recall function spaces defined on R?. Provided definitions and facts are

mainly used to derive analogous statements in the case of T¢.
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1.3. FUNCTION SPACES ON D-DIMENSIONAL TORUS

Definition 1.2.1 (see Section 2.2.2 in [47]). Let s € R and 1 < p < 0. Then we define

the Bessel-potential space in the following way:

Hy (RY) = {fes:|f]

Hs(Rd) = HF_l [(1 + |$‘2)Ff] Hp < o},
where F' denotes the Fourier transform and S’ is the space of tempered distributions.

Now we will list useful facts related to the introduced space.

Lemma 1.2.1 (see Theorem 13.8.1 in [32]). Let s > ¢ and f € H*(R?). Then, function

f is continuous and there ezists constant C' = C(s,d) independent of f such that

[y < C 1]

Hs(Rd) -

Theorem 1.2.2 (see Lemma X4 in [26]). Let s = 0. Then there exists a constant

C = C(s,d) such that Vf,g e H*(R?) n L®(RY) the following inequality holds:

|£9]

ety < C (I e 9] e gy + 1 s gy 19 o)

Lemma 1.2.3 (see Theorem 5.5 in [3] or Section 3.1 in [46]). Let s > . Assume that F
is a smooth function on R with F'(0) = 0. Then there exists C' = C(s,d) independent of
u and F such that:

| (w)]

[s]
ey < CIF o (1+ [l o)

H5(Rd) -

1.3. Function spaces on d-dimensional torus

Let us start with recalling the definitions of spaces set on T¢ = [0, 1)

Definition 1.3.1 (see Remark 3.1.5 in [42] or Section 3.2 and 3.5 in [2] ). Let
{u,}*_, = C*(T?), u € C*(T?). We say that u,, — u in C*°(T?) if 0*u,, — 0“u uniformly

for all @ € Ny. By D'(T?) we denote the space of continuous linear functionals on C®(T¢).

Definition 1.3.2 (see Definition 3.1.6 in [42]). Let S(Z?) denote the space of rapidly

decaying functions from Z<¢ to C. That is, ¢ € S(Z?) if for any k < oo there exists a

21



CHAPTER 1. FUNCTION SPACES AND AUXILIARY LEMMAS

constant C,;, such that

Cso,k

lp(§)] < W

The topology on S(Z%) is given by the seminorms pj, where k € Ny and

pe(p) = sup (1+ [€2)? |(6).
&ezd

Then, a sequence {p,}*_, = S(Z%) converges to the function ¢ € S(Z?) iff

r(n — ) =50 for all k e Ny.

By S’(Z%) we denote the space of continuous linear functionals on S(Z%).
Definition 1.3.3 (see Definition 3.1.8 in [42]). Toroidal Fourier transform
Fra = (f = f): C°(T%) — S(Z%) is defined by
f© = [ sapeetan.
Td

Inverse toroidal Fourier transform 7. = (h — 7L> : S(Z%) — C*(T?) is given by

h(z) = 2 h(€)e?™ s,

&ezd
Definition 1.3.4 (see Definition 3.1.27 in [42]). Fourier transform extends to the mapping
Fra : D'(T?) — S'(Z%) by the formula
;@) = (u, 1.0 @),
where u € D'(T?), ¢ € S(Z?) and ¢ is defined by (10 ¥)(z) = ¥(—x).

Definition 1.3.5. Let s € C. The Bessel potential J* on the torus is defined as follows

(1)) = D (14 4n?[k]2)7? e2mivk f(k),

kezZd

where f denotes Fourier transform of f.
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1.3. FUNCTION SPACES ON D-DIMENSIONAL TORUS

Now, let us recall the definition of fractional inhomogeneous Sobolev spaces on torus

;3 (T).

Definition 1.3.6 (see chapter 3.5.4 in [43]). Let s be a real number, p € (1,00). The

inhomogeneous Sobolev Space H; (’]I’d) is defined as follows

B (T7) = {u e D'(T%) : |u|

iy = 77l <o}

Moreover, based on the orthogonality of {€*™*}, ;4 in L?(T¢) the following characterisa-

tion holds

H* (T?) = {u e D'(T%) : ||u|§,5 = > (1 + 47k P)’ |a(k)? < oo} .

keZd

Moreover, we introduce the following notation
H, (TY) = {U e [H*(TH]?: divu = O} )

To simplify further expressions we introduce also notation:

(f7 g)HS = (Jsf7 J_Sg)L2(']Td) .

Now, we will recall some known facts concerning fractional Sobolev spaces on the torus.

Lemma 1.3.1 (see (9], [22], [26], [23]). Let s = 0 and p € (1,90), p1,p2,q1,G2 € (1,0]

satisfy

1 1 1 1 1

p y4! q1 b2 q2

Let f,g € C*(T9). Then there exists C = C(s,d, p, p1,p2, q1,q2) independent of f and g

such that the following inequality holds:

17 )y < € (19, gy, + 151, 1791, ) -
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Lemma 1.3.2 (see chapter 2.8.3 in [47]). Let p € (1,0), s > d/p and f,g € H3(T).
Then, fg € H;(’]Td) and there exists a constant C' > 0, independent of f and g such that

I£9]

gty S C1f gy cray 190 g ey -

Lemma 1.3.3 (see the proof in Appendix). Suppose that s > 0, p,pa,ps € (1,0) and
p1,p3 € (1,00] such that

1 1 1 1 1

p p1 D2 P3 P4

Let f,g € C*(TY), then there exists a constant C' = C(s,d) independent of f and g such
that

1[5, £ gHLP(Td) <C (HV-]CHLpl(’]I‘d) HJS*IQHLW(W) + HgHLPS(’]I‘d) HJSf”Lm(qrd)) )

where [J°, flg := J*(fg) — fJ°g.

Lemma 1.3.4 (See Lemma 2.5(ii) in [11]). Let s > ¢ and f € H*(T?). Then, the

function f is continuous and there exists a constant C = C(s,d) independent of f such

that

[l < CIfI

Hs -

Lemma 1.3.5 (see Theorem 5.5 in [3] or Section 3.1 in [46]). Let s > %. Assume that G
is a smooth function on R with G(0) = 0. Then there exists C' independent of f € H® (Td)
and G such that:

IGHge < CUC ot (L+ 1) 151

Hs -

Lemma 1.3.6. Let s > <. Assume that G is a smooth function on R with G'(0) = 0.

N

Then there exists C' independent of u,v € H*(T¢) and G such that:

|G (u) = G(v)] I

e < C |G| e

w =] e (L [l o + 0]
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1.3. FUNCTION SPACES ON D-DIMENSIONAL TORUS

Proof. The lemma is a direct consequence of Lemma 1.3.5. Proceeding as in [1] Corollary

2.66, we see that
G(u) — Gv) = (u—v) J G'(u+ 7(v—u))dr,

which can be understood classically due to v, u both being continuous functions (see
Lemma 1.3.4). By applying H* (Td) norm to the both sides and using Lemma 1.3.2 we
get

|G (u) = G()]

s S HU_U|H5

fol G'(u+7(v—u))dr

Hs

Next, we may change the order of the norm and integral to get

|G(u) = G(V)| e < u =]

1

e | 16w 0 = 0l
0

As G'(0) = 0 we may apply Lemma 1.3.5 to the term under integral

|G (u) = G(v)]

HS

< G gpar lu = vl

1
- f (14t 70 — ) ) fu + (0 — )] o

We may estimate the right-hand side using the triangle inequality. We get

|G (u) = G(v)]
< CNG gt =0l e (14 ]y + [0]0) ™ el e + 0] ) -
By using Lemma 1.3.4 we obtain the desired inequality. O]

Lemma 1.3.7. Let f: T? — C be such that f € H*™(T?). Then:

2 2 2
[ rosn = IV F s + 1 s
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Proof. By simple calculations we get the assertion of the lemma:
d
e Z Z (1 + 472k [?)"

3wty | ()
iz 1+ 4n[k[2)" 42k 2 ‘f ‘
-3 (L ank) ™™ = (14 4nP)") | £k

= £

IV 1

e — IF17

Hs -

Lemma 1.3.8 (See Lemma 2.5(i) in [11]). Let p € (1,0) and let p,v € R be such that
v < p. Then HY(T?) — HY(T?).

Lemma 1.3.9 (See Lemma 2.5(iii) in [11]). Let p,q € (1,00) and let u,v € R be such that
v < oand

Then HY(T?) — HY(T?).

Remark 1.3.10. References of Lemmas 1.3.2 and 1.3.5 are provided for R* domain.
By following the argument presented in Section 2.3.1 of [11], those formulations can be
adapted for T¢ case by considering the extension operator H5(T%) s f — of € H3(RY),
where ¢ is a smooth, compactly supported function defined on R?, such that Poye = 1

and

where |x| = (|z1],...,|xd4]), (-] - the floor function). Then, it is clear that

| lwracry < [67] 1 ey < O M s (1.14)
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1.3. FUNCTION SPACES ON D-DIMENSIONAL TORUS

From the complex interpolation (see e.g.: Theorem 2.6 in [34]), we can deduce the analo-

gous inequality for the fractional spaces, i.e.

| /]

2% By i

Considering Lemma 1.5.1 for the function gbj? and using (1.15) yields the needed assertion.

The proof of the Lemma 1.3.5 is more complicated and we shall give more details.

Proof. Let 1, ¢ be smooth, compactly supported functions defined on R? such that

Yijoaye = 1 and @gupy = 1. Also let us observe that G(f) = G(f). Now, using Lemmas
1.2.2,1.2.1, 1.2.3 and the fact that G(0) = 0 we can write

~

e |G(OT)

[s]
) 1]

PG .0 = [OD)

(= |vGeh), . <Ol

Hs (R4 Hs (R4 s (R4 )HS(Rd)

aa (14107

We can easily estimate the both sides using (1.15) to get

<cla@eh)

<C HG
Hs(R4)

Hs(RY)

/ [s]
[lea]Pmemel fed I G 7 Py g Fi e
O
Lemma 1.3.11. Let f € H*™ (T?) and s > 4. Then we have
% s—% 1—% s—% d d
VAl < OIS 171202 forse (5, . 1] (1.16)

and

d
911, < Cflye Jorse (5 +1.).

V]9

Proof. First we concentrate on the case s € (g, + 1]. We see that from Lemma 1.3.4 it

follows

IV flomay < CIVIL 3 (o) iy
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We see that

1O BT (S

and thus we may use the interpolation inequality to get

1
IV Flpogeey < CIV A2, 197157205
Thus by Lemma 1.3.7 we obtain

( 5)

Td

(d)

+1(Td) -

IV £l oo pay <

If se (g + 1,00) we have

IV £l oy < Cr[V £

o1y < O [ f]

Hs(T4) »

which follows from Lemma 1.3.4 and 1.3.7. OJ

1.4. Special function

In later parts of the thesis, we utilise the existence of certain kinds of functions. Let

us set bpin > 0, 0 < wiin < Wmax. Next, we define the following auxiliary functions

t — bmin t — Wmin t — Wmax
bmln 1 wmin 1+K2Wmint’ wmax 1+K2wWmaxt (1 17)
(1+’£2wmaxt) r2

We will justify the existence of functions ¥;, ®; such that

bt for oz < b
x for > b
and
%wfmn for z < wmm,
(I)t(l') - x for we [winin7wfnax]7 <119)
2wt - for x> 2W .
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1.4. SPECIAL FUNCTION

We further require that the functions W;, ®, would also satisfy

0< Wi(z) <, W (2)] <cn(bly)"™" forzeR, (1.20)
0< Phz) <cp, O (2)] < en(wh, )" for zeR, (1.21)

where, ¢, > 0 is a constant independent of = and ¢.
The function ¥, may be defined as follows. We set f(z) = e~/ for > 0 and zero

elsewhere. Then we set

o) = ¢ | #s =

where ¢ = S(l) f(y)f(1 —y)dy. The function n is a smooth function, which vanishes for

negative x and is equal to one for x > 1. Next, we put
hx) = (1 =n(x))f(x) + nz).
We see that h(z) = 0 for < 0 and h(z) = « for x > 1. Thus, it is clear that
¥YneN, 38, >0 suchthat Vee R | (z)| <Z,.

Now we will verify that function A is non-decreasing. In fact, we only need to check if for

ze (0,1)

W) = (1= (e g +nle) + o (@) — )

is non-negative. Indeed, let us recall that 0 < n(x) < 1 and that 7 is a non-decreasing

function. Also Va € (0,1) we have x > e~ %%, Finally, we define

bt . bt . 2 bt .
o)< o (2 (- o)) .

min

It is clear that for the defined function both (1.18) and (1.20) hold. Now we define ®; in

the following way

wrtriin + wﬁzinh < t4 (I _ wfnin)) fOI- T < wﬁnin"_wfnax

2:le) = o ; 2 (1.923)
2wiﬂax - ?wj%h‘ <3w?nax (QanaX — x)) for x 2 wrtnin-‘;wfnax



We see that for ®,(z) = z for v € (3w!,,, 2w’ ). Thus it is clear that ®, is smooth and

4" min’ 4*“max

that both (1.19) and (1.21) hold. Also in Chapter 2 we will need functions such that

0 for x<%blt 0 for x<iwt.

Ui(x) = " du(w) = Lo (1.24)
r for x>0, r for x>wh,
and
() <z for >0, 0<yYy(x)<c for zeR, (1.25)
de(r) <z for 20, 0<¢i(x)<cy for zeR (1.26)

for some constant co. Let us define h(z) = n(z)(z + 1). The functions ¢, ¢, can be

defined as follows:

bt bt t ¢t
Yulz) = 2, (bf <x - m7>) ) = ) (wti (x _ “’;)) (L2

min min

Clearly, the both functions are non-decreasing. Also by recalling n(x) < 1 we see that for

x = 0 we have

bt . 2 bt . 2 b .
_ “min - _ _in _— _ fun 1) <x.
vilw) = =5 (bfmn <x 2 )) (bfmn (m 2 ) " ) '



Chapter 2

Local in time solution for H? initial data

In this chapter we prove the existence of local in-time solutions to Kolmogorov’s tur-
bulence model. The existence result is attained for H? initial data in the periodic setting.
The detailed formulation of the result is given in Theorem 2.1.1. In the proof of the
theorem, the Galerkin method is used. First, the approximation of Kolmogorov’s system
is constructed. Next, uniform estimates of solution are provided. This enables the passage
to the limit in an approximated problem. Finally, the bounds for w and b are proven.

The result is published in [31].

2.1. Notation and main result.

Assume that Q = [[2_,(0,L;), L;, T > 0and Q" = Q x (0,T). We shall consider the
problem (1)-(5) in Q7 = Q x (0,7T). Constants vy, k1, . .., k4 are positive. For simplicity,
we assume further that all constants except of ko are equal to one. The reason is that the
constant k9 plays an important role in the a priori estimates.

We shall show the local-in-time existence of a regular solution of problem (1)-(5) under
some assumption imposed on the initial data. Namely, suppose that vy € Vﬁiv, wo, by € V?

for which there exist positive numbers byin, Wmin, Wmax Such that
0< bmin < bo(l’), (21)

0< Wmin < wo(ZL’) < Wmax (22)
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on (). Additionally, we define

bt . e bmin I wt L = Wmin
min 15 min 1 )
(1+H2wmaxt) g +K2Wmin
(2.3)
'3
(A)t — Wmax t R l bmin
max 1+Kowmaxt’ Himin 4wt x

Now, we introduce the notion of solution to the system (1)-(5). For vy € V2, strictly

positive wy, by € V? and a positive T, functions (v,w,b) € X(T') are solution to (1)-(5) if
(ve,w) — (V®v, Vw) + (uD(v), D(w)) =0 for we Vi, (2.4)

(wy,2) — (W, V2) + (uVw, Vz2) = —kp(w?, 2) for ze V! (2.5)

(bt,q) — (bv,Vq) + (uVh,Vq) = —(bw,q) + (u|D(v)*,q) for ge V'  (2.6)

for a.a. t € (0,7), where = £ and (5) holds. We recall that D(v) denotes the symmetric
part of Vv and (-, -) is the inner product in L?*(Q).

Our main result concerning the existence of local in-time regular solutions is as follows.

Theorem 2.1.1. Suppose that wy, by € V?, vy € Vﬁiv and (2.1), (2.2) are satisfied. Then
there exist positive t* and (v,w,b) € X(t*) such that (2.4)-(2.6) hold for a.a. t € (0,t*)
and (5) is satisfied. Furthermore, for each (x,t) € Q x [0,t*) the following estimates

Wmin Wmax
_ Wmin ) < e 2.7
1 4+ KoWmint w(z,1) 1 4+ KoWmaxt (27)
bmin
_ < bz, t) (2.8)

(1 + KoWmaxt) "2
hold. The time of the existence of the solution is estimated from below in the following
sense: for each positive § and compact K < {(a,b,c) : 0 < a < b, 0 < ¢} there exists

positive Uy 5, which depends only on kq,€2, 0 and K such that if
[voll32 + lwol2 + [Boll32 < and  (winin, Winax, bmin) € K, (2.9)

then t* >ty 5. The Sobolev norm is defined by (1.1).
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2.2. PROOF OF THEOREM 2.1.1

We note that the last part of the theorem is needed for proving the existence of a
global-in-time solution for small data. We address this issue in Chapter 3.

In the next section, we prove the above theorem by applying the Galerkin method
for an appropriate truncated problem. We obtain a priori estimates for the sequence
of approximate solutions and by a weak-compactness argument we get a solution of the
truncated problem. Finally, after proving some bounds for w and b we deduce that the

obtained solution satisfies the original system of equations.

2.2. Proof of Theorem 2.1.1

The proof of Theorem 2.1.1 is based on the Galerkin method. Hence, we need a
basis of the spaces V! and Vjiv. Let {w;}ien be a system of eigenfunctions of the Stokes
operator in V., which is complete and orthogonal in V1 and orthonormal in L2(£2) (see
Chap. I1.6 in [19]). In particular, {w;},n are smooth (see formula (6.17), Chap. II in
[19]). We denote by {\;}ien the corresponding system of eigenvalues. Similarly, let {z;}ien
be a complete and orthogonal system in V!, which is orthonormal in L?(Q2). Set {2;}ien
is composed of eigenvectors of the minus Laplace operator. The system of corresponding
eigenvalues is denoted by {\;};en.We shall find approximate solutions of (2.4)-(2.6) in the

following form

! l !
Vitx) =) d(twi(z), W'(tx) =) eB)alx), V()= dt)zx). (2.10)
i1 i=1 i=1
We have to determine the coefficients {ct}!_;, {el}l_; and {d}}!_;. In order to define an
approximate problem we have to introduce a few auxiliary functions. For fixed t > 0 we

denote by ¥, = V,(z) a smooth function such that

0y (2) bt for oz < b (2.11)
t\X) = .
x for x>0, ,

where bt

min

is defined by (2.3). We assume that the function ¥, also satisfies

0 < Wi(z) < co, [W](2)] < colbum) (2.12)
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where, ¢y is a constant independent of x and ¢ (see Section 1.4 for details i.e. formula

(1.22)). We also introduce the smooth functions ®;, ¥, and ¢;:

1t 1,0t
Whin  for T < SWhin,
— ¢ t
O, (z) = r for xe|wh,w ],
¢ ¢
2W) . for x> 2w
17
0 for =< 30,
Pe(x) = .
x for x>0,

1t
0 for =z < jwim,

x> wt

min*

xz for

We assume that these functions additionally satisfy

0 < ®y(r) < co, | ()] < colwpnin) ™",

P(x) <z for >0, 0<yY(x)<c for zeR,
du(x) <z for >0, 0<¢i(x)<cy for zeR

for some constant ¢y (see Section 1.4).

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

An approximate solution will be found in the form (2.10), where the coefficients {c!}!_,,

{el}l_, and {d!}!_, are determined by the following truncated system
(v, wi) — (V' @', Vi) + (' D(v'), D(wi)) =0,

(Wl zi) — (W', Vz) + (1'VW', V) = —ka (67 (W), 2),
(b}, 2) = (B0, V) + (W', Vi) = =((B)du(w'), 2) + (6 [D, ),
Ci(O) = (UO,wi)’ eé(o) = (w()?'zi): di(()) = <b07zi)7

where ¢ € {1,...,l} and we denote

34

(2.19)

(2.20)

(2.21)

(2.22)



2.2. PROOF OF THEOREM 2.1.1

In the computations below, the exponent [ systematically refers to this Galerkin approx-

imation.

Remark 2.2.1. We emphasise that in order to control the second derivatives of approx-
imated solutions we need the conditions (2.12), (2.16)-(2.18). In particular, we can not

apply piecewise linear functions.

Firstly, we note that ' is positive and then by the standard ODE theory the system
(2.19)-(2.21) has a local-in-time solution. Now, we shall obtain an estimate independent

of [.

Lemma 2.2.2. The approximate solution obtained above satisfy the following estimates:

d

%Hvl\\% + 2tk [ D(0Y)]3 < 0, (2.23)

d 112 t 112

Ellw 15 4 24, | V'3 <0, (2.24)
dbl2 2ut IVE2 < 2| e wol|? 2.25
EH 13 + 2pb VO3 < 2|01 Y]], 1V0']3, (2.25)

where il is defined by (2.3).
Proof. We multiply (2.19) by ¢!, sum over i to obtain

1d
5@”“”3 + (WD), D(v')) =0,

where we used (2.10) and the fact that dive! = 0. Applying the properties of functions

U,, &, and (2.3) we get
1d
2dt

N

[0%13 + pamin [ D@3 < 0. (2.26)

Similarly, we multiply (2.20) by e} and obtain

1d

5 I + (9, Vi) = ol ), ).

By the properties of ¢; the right-hand side is non-positive, thus we obtain (2.24). Finally,
after multiplying (2.21) by d. we get

1d

5 a7 013 + (W', V) = —( (B (), ) + (D, ).
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We note that 9;(b')¢s(w!)b! = 0. Hence, we obtain

1d

5 71015 + an VO3 < (WD) < ], 1], 1903

and the proof is finished. n

We also need the higher-order estimates.

Lemma 2.2.3. There exist positive t* and Cy, which depend on byin, Wmin, Wmax, $2, K2,

co, ||voll2.2, |lwol2.2 and ||bo|22 such that for each | € N the following estimate

H’Ul, wl, bl”Loo(O’t*;HQ(Q)) + ”Ul, wl, bl HLZ(O,t*;H?’(Q)) + H’U’lt, w’lt, bftHL2(0,t*;H1 () < C* (227)

holds.
Furthermore, for each positive § and compact K < {(a,b,c) : 0 <a <b, 0<c} there

exists a positive ty 5, which depends only on ky,€,0 and K such that if

lvol3.2 + [woll32 + [Bol32 <6 and (wmin, Wiax, bmin) € K,
then t* > t}yé.

Before we pass to the proof of Lemma 2.2.3 we present its idea. First, we test the
equation for an approximate solution by its bi-Laplacian. Next, after integration by parts
we obtain (2.28), (2.29) and (2.30). Further, we apply the lower bound for the "diffusive
coefficient” ! (see (2.33)) and use the Hélder and Gagliardo-Nirenberg inequalities which
leads to (2.46). To estimate the H*norm of u' we use the properties of ¥, and ®;.
After applying the energy estimates from Lemma 2.2.2 we obtain (2.57), which leads to a
uniform bound of the H?-norm of the sequence of approximate solutions on the interval
(0,t*) for some positive t* (see (2.61)). Immediately it gives a bound in L2(0,T, H3(£2)).
The last step is an [l-independent estimate of the time derivative of the approximate

solution.
Proof. We multiply the equality (2.19) by A?cl and sum over i

(v, A% = (V' @', VAR + (W D(0'), D(A*)) = 0.
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2.2. PROOF OF THEOREM 2.1.1

After integrating by parts we obtain

(o A% = 2 S ] A,

('@, VAR = (A(W' @ '), VAL,
(WD), D(AX)) = (A D('), AD(W)) + 2(Vyd - VD(u!), AD(2'))
+ (' AD(W"), AD(WY)).

Thus, we get

thHAleg f P AD) 2 dr = (A" @), VAV') — (Ap'D(v'), AD('))
—2(Vul - VD), AD(W")).

We estimate the right-hand side
(AR @), VAL < C([o!|, [ V2!, [V2], + VoI [v2'],)-
Proceeding analogously we obtain

1A + f WIAD () Pdr < O], [ V2], [V, + 903 [ V3],
+ (au D), + 2|V - vDEY], ) [ADEY],.
Now, we multiply the equation (2.20) by A\2e! and obtain
(why A%W") — (W', VA%W!) + (' V!, VAR = =07 (W), A%W1).
After integrating by parts we get

(Wi, A%') = 5 — [ Aw'[3,

zdt‘
(wh'!, VAW = (Awl!, VAW 4+ 2(Vul V!, VALY + (W AW, VAW,
(W'VW, VAW = (Ap'VW, VAW + 2 (VW' V!, VAW + (W VAW, VALY,

—(g7 (W), A%) = 2 (¢(w!) g} (") V!, VAL .

37



CHAPTER 2. LOCAL IN TIME SOLUTION FOR H? INITIAL DATA

Thus, we may write

L o [ VAP e < (2], + 2[Trv], + Juta]
Q (2.29)

1A, + 2 [V, + 20 ) V) [T,
Finally, after multiplying (2.21) by S\?di we obtain
(b, A%H) — (b0, VAP + (4 WV, VA%) = — (4 (0)pu(w'), A%H) + (u'[D(0') 2, A%).

We deal with the terms on the left-hand side as earlier and for the right-hand side terms

we get
— (e (B ) e (W), A%) = (¢, (") (") V', VAY) + (1 (b) g, (W) V', VAD')

(W' [D@Y?, A% = =(ID) [PV, VAY) — (u'V (| D)), VAD).

Therefore, we obtain the inequality

5l AW+ [ (VAN de < (AN, + 2 [V v, + [ a],
Q

+ | Ap VY|, + 2|V, + | de(wh ) (0 VI, (2.30)
+ [V, + Vit [pEOP| + 2w ipE)IvDE), ) [VAY,.
We note that
J ‘AD(vl)fd:U = %f ‘VSUZ‘ZdIL’. (2.31)
Q Q

Indeed, integration by parts yields
QJ |AD(’I}Z)‘2 dr = ZJ ‘Avfwmf dx + J Avi,xm . Avimkda:
Q fem Y92 Q

_ l l l l
- Z J Uk,zmmpxp ’ Uk,xqua:qu + 2 J Avk,xk ' A'Um,:pmdx
Q Q

k,m,p,q k,m,p,q

2
I
= E ‘v dx
k,xmTpx ’

k,m,p,q
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where we applied the condition divv! = 0 and used the tensor notation for components

and derivatives. Also by the same argument the following holds
[AV'3 = [V (2.32)
After applying (2.3), (2.11), (2.13) and (2.22) we get
Forin < 1 (2.33)
for each [. Thus, (2.28) together with (2.31) and (2.33) give

C
: (Hvllli\lvzvl\l% + Vo' [i + [Au' D)3

Fomin (2.34)
+ Vit - D)),

d
ZIAVE + i |AD ()5 <

Applying the Sobolev embedding inequality and the Gagliardo-Nirenberg interpolation
inequality

[Vf], < €[ 920!, < © w5 9l (2.35)

we get

3 1
|AE DS < [ARIDEHI% < C VS [0,

where C' depends only on 2. Thus, applying the Young inequality with exponents (%, 20,5)
we get

C
[Au D)5 < e V'3 + (1'% + [11']2), (2.36)

Again, by the Gagliardo-Nirenberg inequality
V20'1s < [V |90 (2.37)
and the Holder inequality we have
Vi - VD)3 < [VulgIV2' 5 < C V2!, v |22] 52
Thus, applying the Young inequality with exponents (2,6, 3) we get

C
[Vit - VD)5 < e VI3 + — (o' + [']52), (2.38)

39



CHAPTER 2. LOCAL IN TIME SOLUTION FOR H? INITIAL DATA

where € > 0 and C depends only on . Applying the above inequalities and (2.31), (2.32)
n (2.34) we obtain

C _
(10182 + (o) 210118 + 1415.2)
Hinin (2.39)

() (13 + 1 13S) )

d :urmn
EHV%ng [V2']3 <

where C' = C(2). Now, we proceed similarly with (2.29) and we obtain

d C
TIAWS + prn [ VA3 < t—<\|vl||3o\|v2wl||§ + VORIV + o' 51V 2
Frmin (2.40)
AV + VR VS + K 2V ),
where we applied (2.18). We repeat the reasoning, which leads to (2.36), (2.38) and get

C
[Au V5 < e VI3 + Z(le'lo: + I']5%),

|V2w!'Vi [ < | VW' + (leHS,ﬁHung,z)-

Thus, the above inequalities and (2.40) give

d /"Lmln
V23 + B [ B < (13, + (1 + i)l

Hinin (24]_)
+ (anin)_Q(le||g,2 + [ 1152) + (hnin) ("% + ||MZH§,°2)>7

where C' = C(Q2). Further, from (2.30) we obtain

d C
ZIAVIE + i [VAY 3 < . (HleiHVzblH% + VO IV + 115 Vs

+ AV + VAV + w5 VE3
+ b | IV I + [VH D3 + ||MZ|D(U’)||VD(vl)IH§>,

where we used (2.17) and (2.18). Applying the Holder inequality, the Young inequality
and the Sobolev embedding theorem we get

C
; (Hvll\‘ig + 1055 + AV + [VA' Vi3
Fomin (2.42)

+ 'z + 14122 + 1022 + HVQUZH%IW\\3,2|\U’H§,z>~

d
ZIVPV + s VO] <
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Applying again the Gagliardo-Nirenberg inequality and the Young inequality we get

|AE'V 3 < | VI3 + (||bl|| + 11 2),

IV2'Vul3 < e V33 + (”bl”z,z + 1'2.2).
From (2.37) we obtain
C
IV v 2l 52 < C VP, 101521 152 < el VP15 + — (1l + [']2)-

Based on (2.42) we deduce the following estimate

C
— (Il2 + 1132 + eIz + 115 + 101152)

min

d <2112 :uinin 370112
— IV —= |V <
dt” b3 + 9 V=03

C

+ oy (108 1132 + 1145 + 152 (2.43)
C /“Lfnin

+ oy (1 + ) + Sl 9l

where C' = C(2). We sum the inequalities (2.39), (2.41), (2.43) and we obtain

d /“Lfnin
= (V23 + 923 + V20 ) + E22 (120} + V3l + |V28'13)

C
< (101 + 1013 + O+ i+ bl + 115, + 10'152)
e (2.44)
bl l
+ g (118 1018 + 115 + 18+ 1135 + ')
C
+ oy (0 I + Ll + 161 + 1132
for some C', which depends only on 2. We note that
1 bmm ——
Hinin = Zwmax(l + KoWmaxt)' =3 (2.45)
Hence, we have
d 21112 2, 1y2 211112 Hinin 3,12 3,012 370112
= (172013 + 92} + [ 9203 ) + F2o (V30! + [V} + [V2813)
(2.46)

< CR (B i) (1 o)’ (1 185 3 + 135 + o33 ).
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3
where K (Dmin, Wmax) = 922 + (‘%) + (w‘“ax> B8 = max{ -1, 3 -3, —"7}and C
depends only on €2, ¢y and ks.

Now, we shall estimate p! in terms of w! and b'. Firstly, we note that from (2.11) and

(2.13) we have

1

\Ilt(bl) 2 InlIl + |bl| (I)t(wl) = §wrtnin‘ (247)

Hence, by definition (2.22) we get

1
0<pu <2wl, )" (§bmin + |bl]) = (1 + Kowmint) (buin + 2/0']) - (2.48)
Thus, we obtain

c

HPJZHQ < w 1. (1 + ’{2wmint) (bmin + HblH2)a (249)

min

where ¢; depends only on 2. Now, we have to estimate the derivatives of u!. Direct
calculation gives
Vo] = !VQ( bl> (@) )]
< (@) \V2 L))+ 2(By(wh)) 2 [V (T, (5)) HV((I)t(w’))| (2.50)

+ 20, (0 (D4 (W) 2|V (D, l))y + Wy (0) (D (') 72 [ V(P (w))] -

Using (2.12) and (2.16) we may estimate the derivatives

V(T (V)| < o [VV],  |V(P(w))] < (2.51)
[V2(0,(0)] < co(byin) 1|Vbl\ +co [V,
(2.52)
[V2(4 ()] < colwhyn) ™ [Vl + o [V2].
If we apply estimates (2.47), (2.51) and (2.52) in (2.50) then we obtain
}Vzul’ @ (1 + R2wmaxt)max{3,l+é} [‘Vblf + ‘Vzbl‘ + [b'] ‘lef
(2.53)

+ |V + |Vl | + [V + [p V2| +

).
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where ¢, depends only on ¢y and @Q = Zmin (1 + bsy + winin)- Thus we get

Wmin min

|92, < 2Q1 (1 + atwmant) ™45 [| W83 + V201

(2.54)
L IV 1S+ V1 + [V, + o] T2, ]
If we take into account (2.49) then we get
HMZ||2,2 < C3Q1 (1 + /€2wmaxt)maX{3’HE} (HblH§2 + ||WIH§,2 + 1) ) (2-55)
where ¢3 = c3(co, 2). Applying the above estimate in (2.46) we obtain
d L
= (19203 + 19215 + [ V20)3) + 22 (V2o |2 + |V} + | V°0'13)
dt 8 A L (256)
< CQu (1 + raomt)” (14 10, + 3+ 1'13)
where
Wmax ! bmin -3 -3 10 > 1
QZ: 1+ b w (1+bmin+wmin) +1], leOmaX{1~l—H—,3}+ﬂ
min min 2

and C' depends only on €, ¢y and ko. If we take into account the estimates (2.23)-(2.25)

then we have

d anin

= (I3 + 113 + 18132) + B (113 + 115 + 18113,
. L (257

< Qs (1+ Rawmat)” (14 1013 + 13 + ')

where C' = C(cp, Q, k2) and Q3 = Q2 + Q5 + 1. If we divide both sides by the last term

and next integrate with respect to the time variable, we get

—14
(1+ 1 )13 + 10013, + ' ()]52)

~14 14CQ
> (14 1O + PO+ W OBs)  — 5555

14CQ;
(6_ + 1 ) RoWmax

((1 + @wmaxt)’é“ — 1)

—14 7
> (14 ool + Ibol3z + Joolds)  — (14 Ramant) ™1 = 1), (258)
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where the last estimate is a consequence of the Bessel inequality. Now, we define time ¢*

as the unique solution of the equality

~14 15C .
5o+ Hon%,z) o 15Ces ((1 + FoWmaxt )Tt — 1) . (2.59)

1+ _
( [vol (B + 1)Kowmax

52+ [1bo

We note that t* is positive and depends on |3, + [bo

‘%,2 + HWOHS,% K2, Qa €0y Wmin,

Wimax and byi,. It is evident that ¢* is decreasing function of |vg

52+ [lbo

|%,2 + HWOH%Q'

Moreover, for any § > 0 and compact K < {(a,b,c) : 0 <a < b, 0 < ¢} there exists

tis > 0 such that t* > i, ; for any initial data satisfying |jv

%72 + [bo

22t [wol3z <0
and (Wmin, Wmax, bmin) € K. From (2.59) we deduce that t%.s depends only on 6, K, Q ky
and ¢g.

From (2.58), (2.59) and the fact that 3 + 1 > 0 we have

cQ N
e (e )

—14
(1+ 1 @O + 01 + [+ (1)]52)

for ¢ € [0,t*]. Hence,

CQs ; =
2 X = 1 max *)ot1 - 1 2
2, < [(B P (( + FooWrmant®) )] (2.60)

[ )32 + 1622 + o' (2)
for t € [0,t*]. In particular, there exists C* = C*(t*) such that
[V e e,y + 6 ooy + | zeosen) < C* 2.61)
uniformly with respect to [ € N. Next, from (2.45), (2.57) and (2.61) the bound follows
[0 2 s, ) + o' [220,009) + 10 [ 2(0,0500) < Cs, (2.62)

where C, depends on t*, Ko, bmin, Wmax and C*. It remains to show the estimate of the
time derivative of the solution. We do this by multiplying the equality (2.19) by 24c} and

after summing it over ¢ we get

(U,lmv,lt) - (Ul ®Ul> vv,lt) + (NID(UZ)a D(Ult>) = 0.

)
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Thus, after integration by parts and applying the Hélder inequality, we get
[villz < Jdiv(e' @ o), [vel, + [V (1 DWH)], ol
By applying the Young inequality we get
[0415 < C(l div(v' @ v')|5 + |V (W' D (")) 3)-

Next, the Holder inequality gives us

[0413 < (19 B + IVA BIDEOI + |, IVDEHIE).
Finally, the Sobolev embedding theorem leads us to the following inequality

W43 < C (o'l + K12l 12 )
where C' depends only on 2. Applying (2.55) and (2.61) we get
[0 roe 0,0 2202)) < Ch (2.63)

where C depends on 2, cg, t*, K2, bmin, Wmax and C*.

Now, we shall consider (2.20). Proceeding as before we get

iz < CVW 5 + [V (' VW3 + rallef ()]3)

< C(WI5IVe'l + IV IR V'3 + 10151V 26 ) + zlw']3),

where we applied (2.18). Thus, using (2.55) and (2.61) we obtain
||w,ltHL°°(0,t*;L2(Q)) < Oy, (2.64)

where Cy is as before. It remains to deal with (2.21). In a similar way, we obtain

[4]5 < CUVS + [V (V)5 + e () de (w3 + 11 DW)]2)

< CIVE 1015 + IV VOIS + I IZ V2013 + 10 0 w3 + 115 970" ).-
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Applying again (2.55) and (2.61) we obtain
HbftHLOO(O,t*;LQ(Q)) < C*, (265)
where C depends on 2, cg, t*, K2, bmin, Wmax and C*.

Now, we prove the higher-order estimates for the time derivative of the approximate
d

solution. Firstly, we multiply the equality (2.19) by A\;4cl and sum over i
(vft, —Avft) + (' @7, VAvft) — (W'D, D(Avft)) = 0.
After integration by parts we get
VL[5 = — (A (V' @), Vi) + (A (WD), D)) .
If we apply the Holder and Young inequalities, then we get
IVeils < (A (@) [y + A (4 DH)];).

where we used the equality 2|D(v%)[3 = |Vv![3. We estimate further

[Vohl3 < Co' 2, 925 + W93 + |2, [ADG];)
+ [V RIVDY 2 + [Art ] [D@h]).

Using the Sobolev embedding we obtain

Ve < (11 + I Bale'l3s),

where C' depends only on 2. Applying (2.55), (2.61) and (2.62) we get

HVU,lt”LZ(o,t*;m(Q) < O, (2.66)

where C depends on cg, £2,t*, K2, buin, Wmax and C*. Proceeding analogously we get

va’ltHLQ(O’t*;L2(Q)) < C,. (2-67)
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d' and summing over

It remains to estimate bet. Multiplying the equality (2.21) by Py =d;

7, we obtain
(bfta _Abft) + (blvlv VAbft) - (UlVblv VAbft) = (wt(bl)¢t(wl)7 Abft) - (Nl’D(Ul)P; Abft)~
Integrating by parts and using the Holder inequality yields

I3, 13 < C(| <blvl>u szu + 1A ()], [0,
9 @), 98], + 19 (DGR, [981,).

After applying the Young inequality we get

98,13 < A )2 + A (@2 + 9 @@o )]+ 9 (400

Using the Holder inequality we obtain

IVEa1 < CAB 1], + IVH RV + [, [92'],
+Ad 190 + 19 IV + HVAbl :

-

) (2.68)
+ [V @D, oD, + [, [V @),
+ [V RID@)IE + [, 1D IV D)R).
Applying (2.17) and (2.18) gives [y (b")]| < [b!], [ve(wh)], <[], and
[V (@), = () V], <
[V @@, = [0 V'], < o[ V], -
Using these inequalities in (2.68) we obtain
[V, ]5 < C(llbl||§,2Hle§,2 + [ 5210152 + [V 31052 + [V 31652
+ (13 210 5,2 + W\l%,zl\vl\\ggllvl\@g>,
where C' = C(, ¢p). Finally, from (2.55), (2.61) and (2.62) it follows that
HbetHLQ(O,t*;LQ(Q)) < Gy, (2.69)
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where C, depends on ¢y, Q, t*, K2, Dmin, Wmax and C*. The estimates (2.61)-(2.65), (2.66),
(2.67) and (2.69) give (2.27) and the proof of lemma 2.2.3 is finished.

Now, we sketch the idea of the remaining part of the proof of theorem 2.1.1. From the
l-independent estimate (2.27) we deduce the existence of a subsequence, which converges
weakly in some spaces (see (2.70)-(2.72)). Next, by applying the Aubin-Lions lemma we
get the strong convergence of the approximate solution (see (2.73), (2.74)). Further, we
prove the convergence of the “diffusive coefficient” u' (2.76), which allows us to take the
limit in the approximate problem. As a result, we obtain (2.77)-(2.79). In the last step, we
prove a series of inequalities (2.80)-(2.82), (2.84), (2.86), which show that the truncated
problem is, in fact, the original one.

Having the estimate (2.27) from Lemma 2.2.3 we may apply the weak-compactness
argument to the sequence of approximate solutions and we obtain a subsequence (still
enumerated by superscript 1) weakly convergent in appropriate spaces. To be more precise,

there exist v, w and b such that
ve L20,t%V3,) A LP(0,t*V3), v, € L2(0,t%; H()),

w,be L*(0,t*; V%) n L*(0,t*;V?), wy, b, € L*(0,t*; H(Q))

and
ob — v in L2(0,%;V3,), v 2= vin L%(0,t%V2,), v, = v, in L*(0, % H'(Q)), (2.70)

(W' b)) — (w,b) in L*(0,*;V?), («',0") = (w,b) in L*(0,¢*;V?), (2.71)
(wft, bft) — (wy,by) in L2(0,t%; HY(Q)). (2.72)

Thus, by the Aubin-Lions lemma, there exists a subsequence (again denoted by [) such
that
(v', W' b) — (v,w,b) in L*0,t*; H(Q)) for s <3, (2.73)

and

(v', W' b)) — (v,w,b) in C([0,t*]; H(Q)) for q < 2. (2.74)
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We note that from (2.74) for some A\ > 0 it follows
() — (v,0,0) i C([0, 8] CON@)). (2.75)

Now, we characterise the limits of nonlinear terms. Firstly, we note that for a fixed (z,t)

we may write

W, (b (z,t)) — Wi (b(w, 1)) = L % [W; (sb!(z,t) + (1 — s)b(z,1))] ds

= Jo (bl (z,t) + (1 — 8)b(z, t))ds - [b'(z,t) — bz, 1)].

Taking into account (2.12) we get
(W, (b (2, 1)) — W, (b(x,1))] < colb' (2, t) — bz, t)].
Similarly, we obtain
[e(w!(2, 1)) — Pelw(z, 1))] < colw! (2, 8) — wz, 1)].

and
(W, (b(, t))] < co(|b(z,t)| + VL)

min

Therefore, applying (2.13) we obtain

< Alwiin) 7 [[ @) [[e(0)) = To(0)] + [W4(B)]| e (w) — Po(w)]]

min

< Cco) (Whin) ™% [2wmax|b" — ] + (|0 + bl ) |w — '] -

From (2.75) and the above estimate we have

Wy (b)
Py (w)

p— g0, = uniformly on  Q x [0, t*]. (2.76)

Now, we shall take the limit [ — oo in the system (2.19)-(2.21). First, we multiply (2.19)
by a; and sum over i € {1,...,l} and after integrating with respect to time variable we

get
t

Jt(vft,w)dt — Jt(vl®vl,Vw)dt +J (1'D(v'), D(w)) dt = 0,

0 0 0
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l
where w = ) a;w; and t € (0,¢*). Hence (2.72), (2.74) and (2.76) imply that

i=1
t

ft(v,t,u»dt - f(v@v,vfw)duf (pw,0, D(v), D(w)) dt = 0

0 0 0

I
for t € (0,t*) and w = > a;w;. By the density argument, the above identity holds for

=1

w € V. As a consequence, we obtain

to

fz(v,t,w)dt — fh(v@v,Vw)dt +J (tw,5,D(v), D(w)) dt = 0

1 t1 t1

for 0 < t; <ty < t* and w € V. . After dividing the both sides by |t; — #1| and taking

the limit to — t; we get
(04, w) = (V® v, V) + (ptw,0,D(v), D(w)) = 0 for we Vi, (2.77)
for a.a. t € (0,t*). Further, we have
Ur(b) — (D),  ¢y(w') — ¢y(w) unmiformly on € x [0,*].
Thus, using (2.20) and (2.21) and arguing as earlier we obtain
(wy, 2) — (wv, V2) + (pw,0,Vw, V2z) = —ka(¢7 (w),2) for ze V', (2.78)

(b, @) — (b, V@) + (pw,3, Vb, Va) = —(1:(b)¢e(w), ¢)+ (w,a, | D(v)]?, q) for g€ V' (2.79)

for a.a. t € (0,t*).

Now, we shall prove the bounds for b and w. The proof is similar to one found in [36].
We denote by b, (b_) the positive (negative resp.) part of b. Then b = by + b_. We shall
show that

b>=0 in Qx[0,t*]. (2.80)

For this purpose we test the equation (2.79) by b_ and obtain

(b, 0-) = (b0, Vb_) + (w,2, V0, Vb_) = —(4(0)¢4 (), b-) + (hw,a, [D(V)]* Do)

20
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We note that from (2.76) we have 0 < uy,, and by (2.14) we obtain v;(b)b_ = 0. Thus

we get
(Ob—,b_) — (b_v,Vb_) + (pw,s,Vb_,Vb_) <0
and then
d
—o_|I5 < 0.
b3
By the assumption (2.1) the negative part of the initial value of b is zero hence, b_ = 0

and we obtained (2.80).
Proceeding similarly we introduce the decomposition w = w, + w_ and test the equa-

tion (2.78) by w_
(w1, w_) — (w00, Vo) + (e, Vo, Veor) = —(62(), w_).

We note that by (2.15) the right-hand side of the above equality vanishes. Thus we get

4|w_]3 < 0 and by assumption (2.2)
w=0 in Qx[0,t*]. (2.81)
Now, we shall prove that

Wz, t) > % for (z,t) € 0 x [0,¢%]. (2.82)

We test the equation (2.78) by (w — wl,,)— and obtain

min

(w,tv (w - winin)—) - (W”U, V(w - wrtnin)—) + <u‘11t‘1>tvwﬂ \Y% (w - wlilin),)

= —ra(Pf (W), (w— whin)-)-

(2.83)

Using (2.3) we get

(e (00— b)) = 20— ) [B — iz (), (0 — b))

Hence using inequality 0 < piy,e, and dive = 0 in (2.83) yields

1d
5 7 1@ = i) 2 = K2 (W), (0 = whin) ) < =ha(F (W), (@ = Whuin)-)-
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We write the above inequality in the form

1ill(w — Winin) -2 < —R2((G1(w) — Winin) (G6(w) + Winin), (W — Winin)-)-

We note that —ra((¢¢(w) + wl ), (w—w' . ) ) is non-negative. Thus using (2.18) we get

P(w) < w, s0

1d
52 I = i) [13 < = (W — winin) (B(w) + Wiin), (W — Winin)-)

(w— whin)-| ) <0.

= —/{2((¢t(w) + anin)v

Therefore, we obtain 4 (w — w!;,)—_|3 < 0 and by (2.2) we get (2.82).

t min

Now, we shall prove that

Wz, t) < # for (z,t) € Q x [0,¢%]. (2.84)

Indeed, firstly we note that from (2.3), (2.15) and (2.82) we have

Pr(w) = w. (2.85)

Hence, testing the equation (2.78) by (w — Wi, )+ gives

(w,t7 (w - wfnax)Jr) - (CL)’U, V(w - wfnaX)Jr) + (/’L\I’tq’tvw7 \Y (w - wfnax)+>

= —Iig(u}2, (w - wfnax)-‘r)'
Proceeding as before, we get
1 d t 2 t 2 t 2 t
5%”(“} - wmax)+|‘2 — K2 ((wmax) ) (w - wmax)‘i‘) < _I{Q(w ) (w - wma.x)‘i‘)’
and
1 d t 2 t t t
5%”(("} - wmax)'ﬁ‘HQ < _'%2(((’0 - wmax)(w + wmax)? (w - wmax)‘i‘)

= _/{2((0} + wfnax)’ |((.U - wrtnax)+|2)‘
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Hence

S l(w = wha) + 2 < 0.
By (2.2) we get (2.84). We shall prove that

b(z,t) =0 . for (z,t)eQx[0,t*]. (2.86)

min

For this purpose we test the equation (2.79) by (b — 0%,

)—. Then we get

(bt (b= b)) — (b0, V(b = brn)-)) + (12, Vb, V(b — byin)-))
= —(We(O)w, (b= b)) + (Hw,a, D), (b= b)),

The first term on the left-hand side is equal to

1d t 2 Wmaxbmin t
2 dt”<b bmin)—”Q (( TR (b bmin)-) .

1+ wmaxngt)@Jr

The second term of the left-hand side vanishes and the third one is non-negative. Thus,

it follows that

maxbmin
5 (b bh) 15 - (( S 1,<b—bfm>_> < (), (b th) ).

1+ wmaxligt)@Jr

Using (2.84) we obtain

1 d t 2 wmaxbmin t Wmax t
_ — . — — . < - — )
9 dt H(b bmm)—H2 <(1 4 wmaxligt>%+1 ) (b bmm)—> 1+ wmaxKQt (¢t(b)7 (b bmln) )

and by definition (2.3) we get

wmax
5 1(b = bin)—[3 < == (t4(b) = Bipin, (b — blyin)-)-

1 + wWpaxkot

From (2.80) and (2.17) we have that ¢;(b) < b, so

wmaX
—— (b — bryn)-]l5 < —m(b — Diins (b= 0lin)—)

wm X
i ey [ TN
max
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and then 4(b— b)) |3 < 0. Using (2.1) and (2.3) we get (2.86).

Note that (2.14) and (2.86) imply

(b)) = b. (2.87)

Furthermore, (2.11) and (2.86) give W,(b) = b. Finally, (2.3), (2.13), (2.82) and (2.84)
yield ®;(w) = w. Thus,
U,(b) b

_ A 2.88
W, o, q)t(W) w ( )

Applying (2.85), (2.87) and (2.88) we deduce that system (2.77)-(2.79) has the following

form

(v, w) — (V®v, Vw) + (gD(v), D(w)) =0 for weVL,, (2.89)
(Wi, 2) — (wv, Vz) + (va, Vz) = —rp(w?, z) for ze V' (2.90)
w

(b, q) — (bv, Vq) + (gw, Vq) = —(bw,q) + (g |D(v)[* ,q> for qeV'  (2.91)

for a.a. t € (0,t*).



Chapter 3

Global in time solution for small initial data

In this chapter the existence of a global-in-time, regular solution will be proven under
a certain smallness condition. The basic idea behind the formulated smallness condition is
to guarantee the small oscillations of initial data in comparison to the turbulent viscosity
%. The detailed formulation of the result is given in Theorem 3.2.1. Corollary 3.2.4.1

shows that the formulated condition is fulfilled by a non-nonempty class of functions.

Results presented in this chapter are published in [30].

3.1. Notation and notion of a solution

Assume that Q = [[2_,(0, L;), L;, T > 0and Q" = Q x (0,T). We shall consider the
problem (1)-(5) in Q7. Constants vy, k1, ..., k4 are positive. For simplicity, we assume
further that all constants except ko are equal to one. The reason is that the constant ko
plays an important role in a priori estimates.

We shall show the global-in-time existence of a regular solution of problem (1)-(5) under
some assumption imposed on the initial data. Firstly, suppose that vy € v;v, wp, by € V?

and that there exist positive numbers by, Wmin, Wmax Such that
0< bmin < bo(l’), (31)

0 < Wmin < wWo(T) < Winax (3.2)
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on 2. Now, we will introduce notation that will enable us to formulate the smallness

condition from Theorem 3.2.1. Based on the introduced bound we define

in — ) max .
i 1 + :‘igwmint

t Wmin t Wmax
_ 3.3
1 4+ Kowpmaxt (3.3)

These quantities will appear in the lower and upper bounds for w (see Proposition 3.3.1).
Additionally, we introduce the analogous notation for b, for the lower bound of b and the

upper bound of |b]|; (see Proposition 3.3.1 and Proposition 3.3.3c)

Lboll + 3ol (14 Lo (g, 2, o))

bfnin = D T 5 Umax = I Wmax) ) (34)
(1 + Rowmaxt) "2 (1 + Kowmint) =2
where

2ks min{1, 1V (C2(2Ky — 1) y \\ 7T
[OO (ng,l’,:U) :F(2K2_1)$ { ﬁ2} (pTeXp C_g , (35)

and C), is the Poincaré constant for the domain €2, i.e. the smallest constant such that
Iflp < GV £, for smooth f such that §, fdz = 0. In the case of b we will be able to
control the decay of L'-norm. Frequently we will estimate from below the coefficient in

the diffusive term by (see (3.63))

br . bini 1—L
[u— -1 S maxt) 2. 3.6
Hmin wfnax wmax( Rat ) 2 ( )

To express the smallness of the initial data we will need the following quantity

Yat) = (1 Abol3+Awol3 + | Aco[3)-

1 biin 2—1/k
: —— (1 maxl - 1) .
eXp( C2 (2 — 1) (1 ) >

max

(3.7)

Furthermore, to formulate a condition that ensures the existence of a global-in-time so-

lution we have to define (see (3.16) in Theorem 3.2.1)

bmin ((1 + ngmaxt)Qié — 1>
C2w2 .. (2ke — 1)

p““max

A(t) = | llvoll3 exp + b () | (3.8)

o6



3.2. MAIN RESULT

1 bmaxt bmaxt
| Dos(®) | Bus()

B(t) =1+ Wt Wt (wh )2’ (3.9)
_ ! 1 buax() bumax(t)
R PR o A 7 B A T W (3.10)
1 1
D(t) = (wh )2 + INE (3.11)
and
Zu(t) = (bua(t) + AWV (1) + BOYE () + COMlt) + DOYE (). (312

Now, we introduce the notion of a solution to the system (1)-(5). For v, € V2, and

strictly positive wy, by € V2, functions (v,w,b) € X (o0) are global solution to (1)-(5) if

(ve,w) — (V®v, Vw) + (uD(v), D(w)) =0 for we Vi, (3.13)
(wt,2) — (v, V2) + (uVw, V2) = —ko(w?, 2) for ze V!, (3.14)
(bt q) — (bv, V) + (uVb,Vq) = —(bw,q) + (u[D(v)[*,q) for ge V! (3.15)

for a.a. ¢ € (0,00), where g = £ and (5) holds. Recall that D(v) denotes the symmetric
part of Vv and (-, -) is the inner product in L*(2).

3.2. Main result

Now, we formulate the main result involving the global existence of a regular solution

to system (1)-(5).

Theorem 3.2.1. Assume that kg > % There exists a constant Cq ,.,, which depends only
on Q0 and Ky, with the following property: for any wy, by € V?, vy € Vﬁiv, if (3.1), (3.2)
hold and

i — CarsZo(t) >0 for tel0,T), (3.16)

for some T € (0,0], then there exists a unique solution (v,w,b) € X(T) to (1)-(5) in QT.

We recall that we assume that the constants vy, k1, k3 and k4 are equal to one. In

the general case, if all these constants are positive and arbitrary, then the constant in

o7
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the above result will depend on vy, K1, ..., x4 and Q. The functions p!; and Zy(t) were

defined in (3.6) and (3.12), respectively.

Remark 3.2.2. The condition (3.16) involves only the initial data: vy, wg, by, the pa-

rameters of the system: vy, K1, ..., kg and €.

Remark 3.2.3. The assumption ky > = is crucial in the proof of Theorem 3.2.1 (and

2
also in Proposition 3.3.3). Without it, we are unable to prove the exponential decay of
L?*-norm of v(t) and polynomial decay of L'-norm of b(t). These decay rates play an

important role in the presented proof.

Remark 3.2.4. As is stated in [45], Kolmogorov set ko = 1—71 and Theorem 3.2.1 may be

applied for this value of parameter ks.
As a consequence of theorem 3.2.1 we have

Corollary 3.2.4.1. Assume that ko > %, vg € Vgiv, wo, bo € V? and the conditions (3.1),
(3.2) hold. We denote

ot

ay = $up2Ca0, (1 + Fawmat) = (A(t) + B()Y, () + C()Y, () + D(t)Yy ®),

t=0

where Cq ., is the constant given in theorem 3.2.1 and Y, A(t), ..., D(t) were defined in
(3.7)-(3.11). Then aq is finite. If in addition,

bmin 1 Wmin bmin
> 200 (Il + gloolg (14 1o (222, 2203 )) forwg =1 D

max Wmax (Wmax)

and for ko € (%, 1)

1

b 1 Wi bmi w )
min > 20 . b - 2 1 ] min min max 3. 18
Wmax oz <” OHI - 2||UOH2 ( e (K% wmax’ (wmax)2))> <wmin) ( )

and

N

bmin
> ag ([ Avoll3 + [ Awol3 + |Abol3)

max

(3.19)
hold, then the system (1)-(5) has a unique global solution in X ().

Remark 3.2.5. The conditions (3.17)-(3.19) involve only the initial data: vy, wy, by, the

parameters of the system: vy, K1, ..., K4 and €.

o8
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Remark 3.2.6. We shall show that the conditions (3.17)-(3.19) are satisfied on some

non-empty set of initial data. We focus only on the case kg € (%, 1), because the other is
simpler. It may be done in the following way: we shall determine positive 01,02,03 such

that if initial data satisfy the bounds
[bolli < 61, [wolla < 6, |Avol3 + [Awo|3 + [Abo[3 < 05, (3.20)

then (3.18) and (3.19) will be fulfilled. We proceed in the following way:

— set Wmin and Wpax such that 0 < wpin < Wmax and
1+-L 1
209#2 ‘Q| (wmax) "2 < (wmin) f2

1.€. 1

1 max K’i
> 2C0,,., |0 (‘” ) :
w

max min

— fix bpin > 0 so, we have

1
bmin max E
> QCQ,nzbmin|Q‘ <w ) i )

Wmax min

— choose 01 > byin|Q| such that

bmin max %
> 2097,{2(51 (w > ’ s

Wmax min

— find 69 > 0 such that

1
brmi 1 Wi Do w "2
min = 20 ; 5 + =5 1+1 7 mm7 min max ’
Wmax e ( ! 2 2 ( * (KIZ Wmax (wmax)Q))> <wmin)

— if we define ay(d1, 02, 03) similarly as in Corollary 3.2.4.1, where we replace ||bo|:
by 01, |vola by o2 and |Avg|3 + [|[Awo|3 + [|Abo|3 by d5, then from (3.4), (5.7) and
(3.8)-(3.11) we deduce that ag(d1, b2, 3) is increasing with respect to each &;. Therefore,

we can find o3 > 0 such that

bmin L
> a0(51, 2, 53)5:?,

wmax
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— finally, for these positive numbers d1, 0o, 03 and any by, wy and vy such that by, < by,

Wiin < Wo < Wiax and (3.20) hold, the conditions (3.18) and (3.19) are satisfied.

3.3. Proof of Theorem 3.2.1
We need the following auxiliary results (see also theorem 4.1 [36]).

Proposition 3.3.1. Assume that wy, by € V2, vy € V% and (3.1), (3.2) hold. If T > 0
and (v,w,b) € X(T') satisfies (1)-(5), then the following estimates

Wmin Wmax
— < wr,t) L ——, 3.21
1 + Kowmint (z,?) 1 4+ Kowmaxt ( )

bmin

— < b(z,1) (3.22)
(1 + KoWmaxt) "2

hold for (x,t) € QT.

Proof. By the assumption we have w,be L2 _([0,T); H*(Q)), wy, b, € L2 ([0,T); H (Q2)).

Thus the Sobolev embedding theorem implies that w,b e C(Q x [0,T)). Then, by (3.1)
and (3.2) there exists t; € (0,7") such that

1 1
§bmin < b(x,t), §wmin < w(r,t) < 2wmax for (z,t) € Q. (3.23)

We denote by f, and f_ the non-negative and non-positive parts of function f, i.e.
f = f+ + f_, where f, = max{f,0}. For t € (0,¢;) we test the equality (3.14) by

z = (w—w',; )_ and we obtain

min

(0 0= ) )+ 290,90 = ) ) = o, (= ).

2

where we used the condition dive = 0. Using the equality (W) = —ra(w;,)* we may
write

ld ¢ 2 t )2 t b ¢ ¢

5%”(0“) - wmin)*HZ — Ra ((wmin) ) (w - wmin)*) + ;V(w - wmin)*’ V(w - wmin)*

= —#a(w”, (W — wryn)-)
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3.3. PROOF OF THEOREM 3.2.1

for t € (0,t1). After applying (3.23) we get

1d
52 1w = i) =[5 < =k (W = Winin) (@ + Winin), (@ = Wiin)-)

= —Koy (w + Wiin | (@ — anin)—F) ‘

By the Gronwall inequality and (3.2) we deduce that (w — w!,,)— = 0 on for ¢t € (0,¢).

min

Hence

Wmin
— < ot 3.24
I + KoWmint w(z,t) ( )

for (z,t) € Qx[0,t;). Next, testing the equation (3.14) by z = (w—w’ , ), and proceeding

max

as in (3.24) we deduce that

Wmax
)< —————— 3.25
W(l', ) 1+ Iigwmaxt ( )

for (z,t) € Q x [0,t;). Now, for t € (0,;) we test the equation (3.15) by ¢ = (b — b

min)—

and we obtain

<mmw4@a>+(3vw—%m,vw—wm>):—www—¢m>>

w
(2 IDOP. (6~ b
w ’ min/— Y
where we used the condition dive = 0. By applying (3.23) we get
(b,t7 (b - bfnin)*) < _(bw7 (b - bfnin)*)?

1.e.

2t 0= ) B = s (P (0= b)) < (b, (0= b))
From (3.23) and (3.25) we obtain
(0w, (b= Bygn)—) < — (b, (b~ b))
(1 + KoWmaxt)
for t € (0,t1). Hence
71— Poi) 13 < (0 B (0= B
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The right-hand side is non-positive. Thus, by (3.1) we have

brnin

— < b(z,1) (3.26)
(1 + RoWmaxt) "2

for (z,t) € Q x [0,#;). Now, we define

t* = sup{ e (0,T) : (3.21),(3.22) hold for (z,t) € Q'}.

By the previous step, we have t7 > ¢; > 0. If {J < T, then by the continuity of w,b and
(3.24)-(3.26) there exists to € (¢5,T) such that

1 1
§bfnin < b(ZE, t)7 §wfnin < w(x,t) < 2wfnax fOI‘ (C(],t) € Qt2'

Then, we have Z((i?) > %ﬁi‘“— > ( for (x,t) € Q x [0,t3) and we may repeat the argument
from the first part of the proof and as a consequence we get o < ti. This contradiction

means that 7 = 7" and the proof is finished. O

Proposition 3.3.2. For any T > 0, the problem (1)-(5) has at most one solution in
X(T).

V=" 2 !

Proof. Suppose that (vl w! b)), (v* w? 0?) € X(T) satisfy (1)-(5) in Q7. We denote
12 w=uw

—w?, b =>b'—b? and we test the equations for v* and v? by v. After
subtracting the equations for v we get

(ve,v) — (V' @V —v* ®v*, Vo) + <%D(v1) - b—D(UQ),D(v)) = 0.

We note that

(Z06h) - Z009.00)) = (5000, 00)) + (5062, D0)

- (G506, 00))).

(v1®vl —v2®02,V1}) = (UI®U,VU) + (v®v2,Vv).
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By Proposition 3.3.1 we have 3—11 > ! .. so by the Holder inequality we get

1
2
5l + kel DOV < |

6], [D@?)], [D()]5

0

R
wl

2| 0], Il [D@H] o 1D, + [0, vl Vol + 1ol 0%, Vo, -
0

By Proposition 3.3.1 functions w' and w? are estimated from below by w! . . Therefore

the Young inequality, the Sobolev embedding theorem and |D(v)|, = % IVv|, imply

C _ .
Iz + 1 D)E < — ((wfmn) o213 20005 + (W) 10713 20073 2 l]3

min
min

(3.27)
(102 + 112,) ||v|§),

where C' depends only on €. Now we test the equations for w! and w? by w = w! — w?

and as a result we obtain

b
th H 15 + ( Vw, Vw) = (w'v, Vw) + (wv®, Vw) — (JVWQ’VW)

bQ
+ (w wsz VUJ) — K2 (w(wl —|—w2),w) )

From the Holder inequality, (3.21) and (3.22) we get

1d
577195 + il V5 < @ [0l [Velly + el %] 1Vl

1 1
o] W19, 191, + | i

1

57 Nl [ Ve [Vl - e oo+ o el

0

By the Young inequality and Sobolev embedding theorem, we obtain

C _
—— (I Bl + (o) 2 B2 01

min

d
Sl + il V1B <

(3.28)
+ (HU2||§2 + (men)_4”b2|‘§,2HW2H§,2 + MinnleH%g + anin”WQHZ?) ||wH§>,

where C depends only on Q and ky. Finally, we test the equations for b' and b by

b= bt — b? and we get

1 2
thubHQ (b Vb, w) (b'v, Vb) + (bv?, Vb) — (b VbQ,Vb) + <f Vi Vb)

(B, b) — (bt b) + (% DY = L D) 2,b> |
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We note that the last term on the right-hand side is equal to

(bl D(v)D(v! +v2),b) + (% \D@?)f,b) - < s }D@?)f,b) .

wl wlw?

From the Holder inequality and (3.21), (3.22) it follows that

1d
S 3+ 013 < (81, Tl 1900, + o 22, 9,
1 1
o S G o A
[, el ol + 1 2], 10
1
L WL e 1w + ), 10,
e¢]
1 1
« r| 1BIDEE + | L el I -

Applying the Young inequality and Sobolev embedding theorem yields

C _
{1 Balvl + (10?132 + (whan) IR + 1?3

min

d
P15 + 4| VI <

()t + 10" B2) (0" B+ 10213 2) + () ™ 01| 1013
S [ i I P U P e I e Y
+ e DG+ C(1+ [ 2) b1 + C1 Bl

Summing up the inequalities (3.27)-(3.29), we obtain

d
= (ol + wllz + [2l2) < A(e) (lollz + s + [B]3)

(3.29)

with h € L'(0,T), because (v',w?,b’) belong to L*(0,T; H*(Q)) n L*(0,T; H3(Q)). As
v(0) = 0, w(0) = 0, b(0) = 0 hold, by the Gronwall inequality we get that v =0, w = 0

and b = 0 on Q7 and the proof is finished.

]

Suppose that the assumptions of Theorem 3.2.1 hold. Then, by Theorem 2.1.1 there

exists a regular, local in-time solution to the system (1)-(5), which belongs to X (Tj) for

some positive Ty. From Proposition 3.3.2 it is unique solution in X' (7). We will show

that provided the smallness condition imposed on initial data (formulated in (3.16)), the

solution exists on [0,7"). In particular, if (3.16) holds with 7" = oo, then the solution is
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global, i.e. it belongs to X' (o). Firstly, we denote
T* =sup{t* > 0: system (1)-(5) has a solution (v,w,b) in X(t*)}. (3.30)

We note that 7% > T > 0. By Proposition 3.3.2 there exists (v,w, b) the unique solution
of (1)-(5) in X(T™), i.e. the following identities

(v, w) — (V®v, Vw) + (gD(v), D(w)) =0 for weVL,, (3.31)

(We,2) — (wv, Vz) + (va, VZ) = —rg(w? z) for ze V', (3.32)
w

(bs,q) — (bv, Vq) + (gw, vq) = —(bw,q) + (g |D(v)|2,q> for ge V'  (3.33)

hold for a.a. ¢ € (0,7*), where (-,-) denotes the inner product in L*(2). By Proposi-
tion 3.3.1 functions w and b satisfy
for (z,t)e QF". (3.34)

b(t,z) = b w(t,r) = Wt wt,z) < W'

min? min? max

We shall show that if the condition (3.16) holds for some T', then T* > T. As it will
be explained in the proof of Corollary 3.2.4.1, the condition (3.16) holds, provided the
initial data are sufficiently small.

To prove the result we suppose that T* < T and we shall show that it leads to a
contradiction. The idea of the proof is as follows: we shall show that under smallness
assumption (3.16) we are able to obtain an estimate for solution in H?(2) norm, which is
uniform with respect to t € [0, 7%). Next, by applying Theorem 2.1.1 and Proposition 3.3.1
we will be able to extend the solution beyond 7™ and this is a contradiction with the
definition of T*. Therefore, the key step in the proof is to get estimates in the H? norm

for the solution (v,w,b). First, we deal with the lower-order terms.

3.3.1. The lower order estimates

In this subsection we estimate the L2-norm of v and next, the L'-norm of b. The proof
of the main theorem depends heavily on the decay estimates of these quantities. In the

proposition below we consider all values of ks € (0,00) to illustrate the influence of ko for
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the available decay estimates. From this, we will see that ko, = % seems to be a critical

value.

Proposition 3.3.3. For each t € [0, T*) the following estimates hold:

a)
1 bumi 1
2 2 min 2 e
(O < Tolfex (g5 s (1 + % ~ 1))
: . . (3.35)
for ko € (0, §> v (5,00) ,
and
__ _bmin 1
HU(t)Hg < HUOH%<1 + KJQWmaxt) CPeihaxnz fOT Ry = 57 (336)
b)
lw@®)]y < llwolly for k2 € (0,0), (3.37)
c)
1 2
(6@ + 5w (@2
ool + Slool3 (1+ Lo (o, 2, i) ) | (338)
< - i for kg € (—, oo) ,
(1 + Iigwminlf)E
d)
[boll + 5lvoll3 1
- < b + sl for s € (0,0), (3.39)
(1 + HQWmaxt "2
e)

1 1
B + 51w @5 < bl + Slwolls for xa € (0,90), (3.40)

where 1, was defined in (3.5).

Proof of Proposition 3.3.3. a) We test the equation (3.31) by v and we get

1d b .
sl (200, 0w) =0 for te©.1) (3.1
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where we applied the condition divev = 0. Using notation (3.6) and the estimate (3.34)

we obtain

1d

577 102 + [ D(0)]; < O for te (0,77).

The mean value of components of v are zero. Thus, from the Poincaré inequality and the

fact that |D(v)|, = ‘/75 Vo], we get
CIoI3 + pnglel} <O for e (0.7%),
dt C2

By applying (3.6) we may write explicitly

d

1 bmin
ZIoOE + =

CI% Wmax

(1 + Kowmaxt) " )2 <0 for te(0,T%). (3.42)

Multiplying by an appropriate exponential function gives

1

d 2 bmin 2—— *
7 [\v(t)z exp (C%Q ea(@ = 1) (1 + KoWmaxt) 2)] <0 for te(0,7%).

p~Ymax

K2

After integration we obtain (3.35). Similarly we derive (3.36).
b) If we test the equation (3.32) by z = w, then after integration by parts and using
(3.34) we get
——Jw(®)|5 <0 forte (0,T).

Thus we have (3.37).
¢) We now proceed to estimate for b. We can not obtain any pointwise estimate from
above for b. However, we are able to estimate the L!'-norm of b. Indeed, we test the

equation (3.33) by ¢ = 1 and we get

b
(b,tv 1) == (bwu 1) + <;|D(U)|27 ]-> :
The positivity of b follows from (3.1), (3.4) and (3.34), so we get

d b ,
Sl = = G 1)+ (2D ).
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We note that the term (2|D(v)[% 1) is equal to (2D(v), D(v)). Therefore, we can use
the equation (3.41) and we obtain

1d

3.43
5ol (34

d
— = _ 1
Sl = = (b, 1)

From (3.3) and (3.34) we may estimate w from below and we obtain

d Wmin 1d
o] —

o - Ymin 3.44
Sl <~ o)y — 5 ol (3.44)

t “min
Multiplying both sides by &30 T &7 yields

d t _ Ymin 1 d min
E <Hb“163‘0 1+n2wmin7‘d7—> < 2 dt HUHQ SO 1+Fu2wminﬂ'd7—

Integrating from 0 to ¢ gives

‘ . |
HleeSé T 4T < lbo: — lf i”U(T)ngSS Tregil s
2 0 dr

After integrating by parts we get

T=t

b€’ Tt < [bol — Bv(m 5o d]

7=0
1 t 9 ST _ “min  gg Wmin

+ = v(T)|5e0 THrawmins ™" ———— 7.
5 | Il i

Thus we get

1 1 PN
||b||1 + §HUH% < (bo|1 + §|Uo‘g> SO 1+kowmin T T

ds Wmin dr

1 _qt Wi t T Wi
+ Ze So Trgomr &7 H’U(T)H%@SO T hgemin®
2 0 1+ RoWminT

We note that

Jt&cﬁ:ln(l—ﬂ{ Wi t)%
0 1+ RoWwminT 2% min ’
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so we obtain

1 lboll1 + 3]vol3
Iols + lol3 < L
1 + K2wmint) ©2
1 1 t Whni
- o | It ar
(1 + KoWmint)*=2 JO 1 + KoWminT)™ "2

Using (3.35) implies

[bollx + 3lwol5 5[l

1
||b||1 + 5“@”% < It(’f%wminywmaxy bmin);

1+ ngwmmt)% (]. + IiQ(,«}mint)é

where

It (’{2 sWminy Wmax bmin)

(3.45)

Wnin
—dt

0 . C2w2 . (29 — 1)

p~’max

9L
Jt brnin <(1 + KoWmaxT)~ "2 — 1)

(1 + RowminT) =2

Now, we shall derive an estimate of ;. Depending on the value of ko, we obtain different

types of estimates. Firstly, we focus on the case ko = 1. From (3.21) we have

1 1 1 1
Wmin . (wmin> "2 (wmin) "2 < (wmin) "2 (wmax)l "2
~

1 1 T
(1+ /{mein’]’)l "2 (1+ ngminT)l "2 (1+ ngmaXT)l "2

and thus

It(’i27 Wmin, Wmax bmin)

_1
(wmm > % Jt bmin <(1 + IigwmaXT)Q D p— l) dr
Wmax -

< exp

0 Crwhax (262 — 1) (1+ K,QujmaxT)l_% .

max

(3.46)

Now, we change variables s = 1 4+ Kowna T and get

]t(KQ, Wminy Wmax bmin)

< 1 Wmin % bmin foo bmin32_% i*ld
x - "2 .
fo \wmar ) P\ C22, 2m— 1)) ) TP\ ek o -1 )T
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1

o1
bmin's "2 :
T2 @ra 1) leads to the estimate

Next, the change of variables y =

It("i27 Wmins Wmax bmin)

1 1
< Wmin "2 exp bmin Cg(wmax)2(2“2 - 1) 2rat T 2/‘%2 ‘
Winax C2w2 . (2K — 1) binin 2Kk9 — 1

Therefore, in the case of k3 > 1 we obtain

1
ol + 5 1ol

1 1
-\ w2 [ C%(wmax)?(2r2—1) . Zrp—1
||bOH1 %H,UO”% (1 F (2‘3:il> (Zj;“;i) 2 ( ’ wmabmin = eXp <C§$;2:a)<>> 2 )

1

(1 + RQWmint) )

<

Hence (3.38) holds for ko = 1. Now, if we assume that kg € (%, 1), then we have

1 1

1 < 1

(1+ ﬁgwminT)k@ (1+ /imeaXT)k@

and from (3.45) we obtain

It ("i27wmin7 Wmax bmin)

t bmin <(1 + R2wmax7—>2_é - 1) dT (347)
< Whin | exXp | — .
J;] nggnax (2’%2 - 1) (1 + KJQ(,dmaxT)l_%

Proceeding as before we obtain

1
o]l + 5“””%

1
i Cz max 2 2 —1 . —
HbOHI + %HUOH% (1 + F (—2‘3:31) _Z:‘I:( ( p(w briirf K2 ) exp <_C'g$i2:ax>) 2Kk9 1)
1

(1 + /’igwmint) R2

<

Hence, (3.38) also holds for x, € (3,1).
d) Now, we shall obtain (3.39) - the estimate from below. Firstly, we note that from

(3.21) and (3.43) we have

d 1 w
—{Ip |2 ) = ——2 p],.
2 (1ot + 5108) bl

1 + KoWmax
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Therefore

d Winax

1
—In (o] + =v)3 ) = ——T—.
o n(! I+ 2\'0\!2) T

After integrating the both sides from 0 to ¢ we obtain

by + L|vl|? 1
I 15|11 i’ H22 >~ L (14 st
1bollx + 5[ vol3 Ko

so the inequality (3.39) is proved.
e) The estimate (3.40) is a direct consequence of (3.44).

3.3.2. Higher order estimates

In this section we will obtain estimates for |Av(t)|,, |Aw(?)|, and [|Ab(t)|,. Having
these estimates and results of the previous section we will be able to control the H? norm.

From (3.31)-(3.33) we get

b
(v, A%w) — (v @ v, VA%w) + <;D(v), D(Azw)> =0, (3.48)
(we, A%2) — (wv, VA?Z) + <£Vw, VA2Z> = —ko(w?, A%2), (3.49)

b
(00 %) = 0, V%) + (L90,90% ) = ~(b %) + (DO 2% (350)

for a.a. t € (0,7*), where the test functions are such that A?w e V. A2z e V! and

A%g e V. Integrating by parts and using the condition divv = 0, we obtain

w

(Avg, Aw) — (A (@), VAw) + <A (fp(v)) ,D(Aw)> —0, (3.51)

(Awy, Az) — (vV2w, VAZ) — (VwVu, VAZ)+ (A <évw) ,VAz)
w (3.52)

— k(A () A2),
(Aby, Ag) — (vV?h, VAG) — (VIVw, VAg) + (A (gw) ’VAQ) (3.53)
= —(A(bw), Ag) — <v (g !D(v)F) >AVCI) !
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for a.a. t € (0,7*), where (-,-) denotes duality pairing between V!(Q2) and (V!')*. The
density argument and regularity of (v,w,b) allow us to test the system (3.51)-(3.53) by

the solution. Thus we obtain

b
%%Av@ —(A(v®wv),VAv) + (A (;D(v)) ,D(Av)> =0, (3.54)
1d 9 9
55\\&*)“2 — (vV*w,VAw) — (VwVu, VAw)
b (3.55)
+ (A (;Vw) ,VAw) = —ra(A (w?), Aw),
1d, ., ) b
~ A2 — (vV2b,VAD) — (VOVo, VAD) + (A [ 2Vb ), VAD
2dt w (3.56)

= —(A (bw), Ab) — (v <£ \D(u)|2> ,VAb)

for a.a. t € (0,7%). In the above equations, some terms are similar and can be treated

in the same way. To simplify further calculations let us analyse these terms first. One of

b
(A <_w) ,mf> |
w
In this case, we may write

(A <ﬁw) ,VAf> = (QVAf,VAf> + 2 (VQf-V (ﬁ> ,VAf)
w w w
+ (A (b> Vf,VAf) — <£VAf,VAf) + 2 (év%w,vmﬂ)

9 (%Wf : Vw,vAf) + <%Vf, VAf) ~2 <<VZ—QW)VJ‘3 VAf)

them has the following form

(3.57)

- (%Aww, VAf) +2 (% IVw|> Vf, VAf> .
w w

On the right-hand side, we can control the sign only of the first term. Therefore, to

simplify future calculations we define W (f) using the last six expressions, i.e.
b b
A an ,VAFf | = aVAf,VAf + W (f). (3.58)
Similarly we define W (v)

w w

<A (ED(U)) ,D(Av)) - (%(A@,D(Au)) + W (v). (3.59)
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3.3. PROOF OF THEOREM 3.2.1

Using this notation the system (3.54)-(3.56) may be written in the following way

1d b ~
5@“AUH% + (;D(Av), D(Av)) = (A(v®wv),VAv) — W(v) (3.60)
1d 5 b ) 9
——|Aw|; + | =VAw, VAw | = —ks(A(w?), Aw) + (vVw, VAw)
+(VwVu, VAw) — W(w),
1d, ., (b )
5| A3+ ( =VALVAb) = (9%, VA) + (VbV0, VAD)
, (3.62)
—(A (bw) , Ab) — (v (5 |D(v)|2) ,VAb) — W (b).
We recall that by applying (3.6) and (3.34) we get the bound from below
b
t J—
Hmin < w' (363)

Thus, from (3.60) we obtain

1d ~
§%HAU”3 + b ID(AY) 3 < 2(Av ®@ v, VAD) + 2(Vu ® Vo, VAv) — W (v).  (3.64)

To estimate the right-hand side we use the Holder inequality and we get
2(Av®v, VAD) + 2(Vo ® Vo, VAV) < 2|v|3]Av]e [VAv|, + 2[|Vo|] [VA],.

Then, after applying the Sobolev inequalities and Gagliardo-Nierenberg inequality (1.6)
we get

2(Av®v, VAV) +2(Vv ® Vo, VAv) < C(|lv]s + [ Vo) [VEv],

where C' depends only on 2. Using the interpolating inequality
1 1
[vls < Cv]3 [Vol3

we obtain

1d

S 1Al + | DA)E < C (ol Vol + Vol ) IVl - T). (365)
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Now we focus our attention on the equation (3.61). After applying (3.63) we get

1d
5 w3 + [V AWIE < (020, VAW) + (VwiVv, VAw)

— 265 (|Vw|*, Aw) — W (w),
where we used the nonnegativity of 2k, (WAw, Aw). By the Holder inequality we have

1d

S IAWE + st [V AIE < ol [Vl

VAw], + 2|Vwla[ Vol [V Awl,

+ 26 [Vl [ V], [Aw]s — W (w).

Applying the estimate (1.12) to the term |Vw]||  and (1.7) to term |v]3 yields

1d 1 1
S AWl + i [VAWIE < O [0l IVl + k2 [Vl ) IVPw3

+2|Vwl4[Vols [VAw], = W(w).

Using inequality (1.10) gives

1d 1 1
S AWl + i VAW < O [0l IVl + k2 [Vl ) IVPw3

1 1 3 3 3 %
+ C Vw3 [Vol3 [Vi] Vo] =W (w),

where C' depends only on 2. So finally, after applying the Young inequality with exponents

(3, 4) we obtain
1d

1 1 1
5 771895 + [V AW < C( [ollz 1Vols + &2 [Vwls +[Vwls [V

[SISSINIE

> (3.66)

IVl + IVP2) = W (w).

Now, let us turn our attention to equation (3.62). We integrate by parts
—(A (bw) , Ab) = —(wAb, Ab) — 2(VwVb, Ab) — (bAw, Ab),

(v (g\D(U)P) ,VAb) - (%D(v)ﬁ,mb) - (IJZ—;)\D(U)\Q,VAI))

L2 <£D(U)VD(U),VAZ)> |
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Using the above calculations we may write (3.62) in the following form

(vV?b, VAD) + (VbVv, VAD) — (wAb, Ab)

1d, ., (b

S IAE + (;VAb, VAb> -
bVw

7|D(U)|2,VN?>

—2(VwVb, Ab) — (bAw, Ab) — (%b|D(v)|2,VAb) - (

9 (ED(U)VD@), VAb) — W),

W

The third term on the right-hand side is non-positive. Hence, using (3.63), we get

1d
—— A3 + s [ VAD|S < (VBV, VAD) + (vV?h, VAD)

2 di
— 2(VewVh, Ab) — (bAw, Ab) — (%\D(U)P,VAE)) (3.67)
n (bZ;’w(v)y?,VM) 9 (gD(v)VD(v),VAb> — W),

From the Holder inequality we obtain

1d
5 1A + pin [V ABIZ < [V Vol [VAb], + 0] Vb]s [V A,

2dt
1
+2[Vulg Vbl |Abls + bl | Aol bl + '5 Vbl D(0) 2 [V 2],

0

1

2
1
vl L. 19 D(0) sl D(0) s [V ABL, — W)
a0

bl [Vl D)2 [V A, +2 '—
o w

Now, we estimate the right-hand side by applying the Gagliardo-Nirenberg inequalities

1 1 3 1
by (1.10) : Vol Volla [VAb], < e[ VO] [Vol3 [V75]3 [P0,

1 1
by (1.7), (1.8) : [vls[V*blls [V Ab], < c[Vol3 vl [V78]3,

by (1.8), (1.12) : [Vwls [Vl [Ab]ls < c[Vele [VED]3,

27

1 1
[Abls < e(IVBI3 17 + [b]) [V, V7]

by (1.13), (1.8) = [[bll3 [Awls

1
by (330.(18),L9)s | 2] [Vl DRIV A,

2

win) [ V0L, V70l [VP0, [ V20

< C(wmin

2

1
by (334), (L1, (18, 09): | 2] 1oL, IVell DI 1V A,
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< e(wiin) ([ V20, + [010) [ V2], V0l [ V20, [V22],

by (3.34), (1.11), (1.8), (1.7) : ‘k%

160 VD ()]s D ()]s [V Abl,

N

cwhin) ™ (V2] + 1010 [Vl V0l [Vl V0],

where ¢ depends only on 2. Thus, if we apply the Young inequality to separate the norms

of the third-order derivatives, then we obtain

d 1 1 1 1 1 1
5 A3 + w203 < eIV [V0I3 + [Vl o3 + [ Veoly + V515 bl
ol )™ (9 [900, + () (1900, + 1000) [Vl 190,

+ (@) (V2] + 10) 19013 [ 9203 ) - (195013 + V2l + [9%0]3)

- W(b)7

where ¢ depends only on 2. We note that after integration by parts we get |V f||, = [Af],
for f € V? and 2| D(Av)|Z2 = V303 (see (2.31), (2.32)). Hence, summing the inequalities
(3.65), (3.66) and (3.68), we obtain

&l&

- (1805 + [Aw]z + [Ab]5) + i (IVAC[E + [VAW]3 + [VAD];)

N | —

1 1 1 1
< (ol 19013 + Vo, + [Vwls + Vol [Vol} + 90l 7]}

+ HVbHs b1 + 011 + (b ™ [928], [Vl + (k) 2 [ 928, V2], [V,

N Hle

1 1 b 1 1
1926l 1901, + () ™ [V, 1901 (92015 + Lo00 o [of)

( t
mln min

(VA + VA3 + [VAB) = W(©) = W(w) - W(b),

where C' depends only on ko and (). Before we estimate the last three terms we will

introduce the following notation

Xo(t) = [o®)]3 + [b(1)]5,

Xi(t) == [Vo@)]z + [Vo®)]z + [Vo)]3, (3.60)
Xo(t) = |Av(t) |3 + |Aw(®)]3 + |Ab(1)]3,

X3(t) == [VAv@)[3 + [VAw(®)[3 + [VAb(H)].
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After using the Holder inequality we obtain

1d 11 1
5 i M Xa < O(XGXT + X7+ ol + (hio) " X7XF + () 2X5 o
3.70)
b b 11 ~ (
T | ”1) XPXZ + (Why) I X X+ ” ||1X14X24) - Xy — W(v) = W(w) — W(b),
wmm wmm

where C' depends only on k2 and 2. Now, we need to estimate terms WN/(U), W(w), W (b),
which were defined by (3.57)-(3.59). In each case the estimates are similar. Thus, we

consider W (f) for general f € V3. In this case, we have

2

Wl <2|Z] IT0IT 1oV AL, +2| 2] 1oL, 19T 1o VAT,
1 1]
o NI b R T2
1) 1)
e|2] 1t e e 19ass, 2|7 1L IveRIVSRIvAL,.

As before, we use (3.34) and (1.7)-(1.13) and we have

WAl <~ (HVbHQ 803 [V £, + (whyn) ™ (JABL, + [b2) [Vl |Aw]3 V3],

min

1 1 1 1 1 1
+ VA A3 VA, + (i)~ VB3 V@[3 [Af], [VAW]F [VAD]3

(120l + [61) [V I3 1AFI3 1V Awl,
“(180], + [8]1) [ Vel [AF] HVAWHQ) VAT,

+ (w

mln)

+ (!

min )

where ¢ depends only on 2. We obtain an analogous estimate for I/IN/(U) Then, using

notation (3.69), we obtain

~ 11
(W (0)] + [W ()| + [W(b)] < w%(x;x; T () XX 1o ”1X4X4 XX
1

1 1 1
(Wl )TIXEXE 4 (W) 1X4X4 wlxl X,

mll’l

min

b
xix, +

1 11
(w ) (w ) X12X22> 'X37
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where c is as earlier. We simplify further

~ c 1 1 b 11
T+ W+ WO < i (et + 18) X565 + (14 T i

t
1 3 1
XX+ () XX ) - X

min

and ¢ depends only on . Using this estimate in (3.70) we get

1d 1ot L L P T !
5%)(2 + i X3 < C<X61X14 + X7+ o]y + (wf + T )2 Xy

min fnin (wmin IXQZ
O T R
X2X2? 3.72
’ (w;m+<w;m>2+<w;m>2 i) N1 (3.72)

s ) X (s ) X ) x
hin - @hi)?) T N @h)? @l )

min min

where C' = C(, k3). After applying the Poincaré inequality we obtain X; < C’ng, SO
we may simplify further

1d. Lo L el
3 e X < C(XG XS+ b, + (1 P e )
L1 ol \bl> ( 1 1 ) :

+ + + + Xy + + X2>-X3.
(w;m Gl T W T P o ) X2

min min)2 (wmin

(3.73)

By (3.6) and (3.38) we have ||b(t)]1 < bmax(t). Hence, using (3.8), (3.35), (3.38) and (3.69)

we get

N

o1
bmin ((1 + 52wmaxt) "2 — 1)

X () < | ol exp G T | )| = AW

p~“max

and we obtain
Xo Xg + b, < A() XS + bmax(t).

Applying this inequality in (3.73) yields

1 1 3
X + 2t X < Co (buaslt) + AWXS + BO)XF + C(1)Xs + D(1)X; ) - X, (3.74)
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where Cq , depends only on €2, ko and we used the notation (3.9)-(3.11). We denote

3
2

2(t) = (buae(t) + A(D)XS + BOXE + C(H)Xs + D(H)X; ) (3.75)

Thus, the inequality (3.74) may be written in the following form

d
£X2( ) + (hin — Cans Z (1)) Xs(t) < —plin Xs(t).

Using the Poincaré inequality implies

d

EX(0) + (i — Cora (1) Xst) < ’“‘g;“XzU (3.76)

By definition (3.7) and (3.69) we have Y3(0) = X5(0). Hence, using (3.12) and (3.75) we
get Zo(0) = Z(0). Next, by assumption (3.16) we have

bmin
— CQ’,§2Z()(0) > 0,

wmax

so we have

bmll’l
— OQ K2 (0) > 0.

wmax

We note that (v,w,b) € L*([0,T*); H*(Q)) and (v4,wy,by) € L2([0,T*); H'(Q2)). Hence,
we have X, € C([0,7%)). Therefore, there are two possibilities:

Vte[0,T%) ply, — ComZ(t) >0 or 3t e (0,T%) pb, — Z(t*) = 0.
In the first case, the inequality (3.76) gives a uniform estimate
[Av(®)]3 + [Aw®)]3 + [AbE)]5 < [Avol3 + [Awoll + |Abol3 for te[0,7%). (3.77)

By (3.35)-(3.40) we have

lo@lly < lwolly, ()l < Jlwol,

1
1O, < e[ V2D, + [b(t)]1) < e([VZo(E) ], + 8ol + 5 lwol3)
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for t € [0, 7%), where ¢ = ¢(2). These estimates together with (3.77) give
[o@®)52 + [w®)32 + [0(t) |52 < ¢ (Jvol32 + [woll3.2 + bo]3.2) (3.78)

for t € [0,7%*), where ¢ depends only on 2. We denote the right-hand side of (3.78)
by 6. We set K = {(w!,,w! ., 05) o ¢ € [0,7%]}. Then K is the compact subset
of {(a,b,c) : 0 <a<b, 0<c}and by Theorem 2.1.1 there exists t} ;5 such that the
problem (1)-(5) with the initial condition (v(t),w(t), b(t)) can be extended to the interval
[t,t + k), where t is arbitrary in [0, 7). For t > T™* — ¢}, ; we obtain the contradiction
with definition of T™* (see (3.30)).

In the second case, using the continuity of [0,7%) 5 t — ul,, — Cax,Z(t) we may
assume that t* € (0,7*) is the first point with this property, i.e. pl, — Co.,Z(t) > 0 for
te[0,t*) and pb, — Z(t*) = 0. Then, from (3.76) it follows

£X2(t) < —i;ﬂfmnXQ(t) for te (0,t%).
dt C?

p

Using (3.6) we may write

d i bmin

<
C2 Wmax

(1 + Kowmaxt) %2 Xo(t) for ¢ e (0,8%).
Thus, after multiplying by an appropriate exponential function we obtain the bound

1 .
Xs(t) < X5(0) exp < imin 5 ((1 + Fowmaxt)? "2 — 1>) for ¢ e (0,t%).
w

02 (2ky — 1)

max

By definition (3.7), the above inequality means X5 (t) < Y5(¢) for ¢ € [0,¢*). Hence, we get
Xo(t*) < Yo(t*). Using the definition (3.12) and (3.75), we deduce that Z(t*) < Zy(t*)
and then

0= “f:in - CQ,HQZ(t*) = Nf:in - CQ,MZO(t*) > 07

so we get a contradiction with the assumption (3.16). Thus, we obtain that 7% > T and
the theorem 3.2.1 is proved.

It remains to prove Corollary 3.2.4.1.
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3.4. Proof of Corollary 3.2.4.1

We shall show that the condition (3.16) is satisfied for 7' = oo. Firstly, for ko > 1 we
note that from (3.17) it follows

bmin 1 Wmin bmin —
> 20&),/{2 (bO‘l + 5”7)0”% (1 + Ioo (KJQ, -_—, >)) (]. + Klgwmint) !

max Wmax (Wmax) 2

1

for t > 0. Hence, after multiplying the both sides by (1 + @cumint)l_@ we get

t bmin

(1 + fowmint)' "% > 2050, bunax (1) (3.79)

For ks € (3,1) from (3.18) it follows

bmin

(1 + Kowmaxt)

1
Wmax =2 1 2 Wmin bmin
> 200 (222) ™ (tuls 4 glol} (14 1 (e S22, Lo )

1

for t > 0. Hence, after multiplying the both sides by (1 + Kowmaxt) 2 we get

wmax

1
t Wmax 1+ KQWmint "2
> 200 10, bax (T . i
Mmln Q,k2 Yma ( ) (Wmin 1 4 /{2wmaxt>

We note that the function Xf2¢minl j5 decreasing and strictly greater than “miz so we
1+Kowmaxt Wmax
have

:ufnin > 209752 bmax(t)- (380)

Next, we shall show that ay is finite. Recall that x5 > 1 and then by (3.4), (3.8) we deduce
that (1 + /fgwmaxt)%_lA(t) decays at infinity as (1 + /ﬂgwmaxt)%_l. Thus, the expression
(1+ K]meaxt)%_lA(t) is uniformly bounded on [0, c0). Furthermore, the remaining terms
in the definition of ag can be estimated by expressions of the form (1 4 Kowmaxt)*Y2 (1),
where o < 3 and § > 0. We recall that the function Y5(t) decays exponentially, therefore

ap 1s finite.

w

1
Finally, by (3.19) we get bz; > agYy' (t) for t € [0,0). Thus, using the definition of

ap we obtain

bimin = 2C (1+ I{meaxt)éfl <A(t)Y2 (t) + B(t)YZ% + C(t)Ya(t) + D(t)Yﬁ(t))

wmax

NG
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for t € [0, 00), so we get

N
o

fhin > 200, (A (1) + BOYF + COY(0) + DOV (). (381)

Summing (3.79) or (3.80), (3.81) and using definition (3.12) we get 2ul; > 2Cq ., Zo(t).
Hence, the condition (3.16) holds for 7" = co.



Chapter 4

Existence and uniqueness of local in time

solutions for H*(T?) initial data

In this section, we will show the existence of the local in-time solutions for initial data
from H*(T?) and s > g. Presented methodology heavily relies on the results of Chapter A.
Moreover, the restriction on s follows from interpolation inequalities, Lemma 1.3.3 and

the Gronwall inequality. The results were published in [29] in the form of a preprint.

4.1. Notation and main result

Assume that Q = T, T > 0 and QT = Q x (0,T). We shall consider problem (1)-(5)
in Q7. Constants vy, k1,. .., ks are positive. For simplicity, we assume further that all
constants except of ko are equal to one. The reason is that the constant ko plays an
important role in a priori estimates.

We shall show the local-in-time existence of a regular solution of problem (1)-(5) under
some assumption imposed on the initial data. Namely, suppose that vy € H3 (T?), wy,

bpe H S(Td), where s > g and that there exist positive numbers byin, Wimin, Wmax Such that
0< bmin < bo(l‘), (41)

0 < Wiin < wo(T) < Wiax (4.2)

on T¢. Additionally, based on the introduced bound we define

bmi t Wi

bt — min wh . = min

min 1 min 1 RS

(1+H2wmaxt) g +K2Wmin
(4.3)
t

wt — Wmax Mt L = l min

max 1+Kowmaxt’ min 4 wfnax '



CHAPTER 4. EXISTENCE AND UNIQUENESS OF LOCAL IN TIME SOLUTIONS FOR H*(T%)
INITIAL DATA

Now, we introduce the notion of a solution to the system (1)-(5). Let s > %. We say

that triple (v,w, b) such that

ve C([0,£%), Hy, (T) n L2(0,*, Hi' (T)) 0 WH2(0,¢%, Hy ' (T7)), (4.4)

(w,b) € (C([0,8%), H* (T?)) A L2(0, ¢*, H** (T9)) n WH2(0, %, H(T9))*  (4.5)
is a solution to (1)-(5) on time interval [0, T) if
(v, w) — (v®v, Vw) + (uD(v), D(w)) =0 for we H}, (T?), (4.6)

(W, 2) — (W, V2) + (UVW, Vz) = —kg(w?,2) for ze HY(T?), (4.7)
(be,q) = (bv, V) + (4VD, V) = —(bw,q) + (u[D(v)*,q) for gqe HY(T?),  (4.8)

holds for a.a. t € (0,T), p = 2 and (5) holds. Recall that D(v) denotes the symmetric
part of Vv and (-, -) is the inner product in L?*(2).

Now we can formulate existence and uniqueness results.

Theorem 4.1.1. Let d € Nsy, s > d/2. Let (vo,wo, by) € (H* (Td))d+2 be such that
divvg = 0, mingera bo(x) > 0 and mingeqa wo(z) > 0. Additionally, let time T > 0 be such

that

T
(]_ — 2_ﬁ+1) (]. + HUQ,W(), b()‘ 12115>_/B+1 = (5 - )f C(bminawmina SaT)dTa

0

where C(Wmin, bmin, S, T) 1S a rational function which is finite for T = 0 (see (4.45)) and
p = B(s) > 1. Then, there exists t* > T such that the system (4.6)-(4.8) has a unique

solution (v,w,b) on [0,t*).

Theorem 4.1.2. Let d € Nxy, s > d/2. Let (vo,wo, by) € (H* (Td))d+2 be such that
divog = 0, mingepa bo(z) > 0 and mingea wo(z) > 0. Let T > 0 and (v;,w;, b;) be two

solutions to system (4.6)-(4.8). Then

vt =% wl=Wwh b =0 Y(tz)e[0,T] x T
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4.2. Proof of Theorem 4.1.1

The proof will be divided into several steps to better present and simplify the used
methodology.

4.2.1. Definitions of auxiliary functions

To define an approximate problem we have to introduce a few auxiliary functions. For

fixed ¢ > 0 we denote by ¥; = U,;(x) a smooth, non-decreasing function such that

t .
o (4.9)

min

1pt 1
b for @< 35b

Vy(z) =
' z for =0

where b, is defined by (4.3). We assume that the function ¥, also satisfies

U ()] < (b

YR Wk e {1, [s] + 1}, (4.10)

where, ¢y is a constant independent of x and ¢ (see Section 1.4 for details). We also need

a smooth, non-decreasing function ®; such that

Lot for x< %wt

2% min min
q)t<‘r> - v for xe [wltnin? wilax] ' <411>
2wt for x> 2wt

We assume that this function additionally satisfy

10 (2)] < co(wh, ) F Vke{l,... [s]+1}, (4.12)

min

for some constant ¢y (see Section 1.4 for details).

4.2.2. Approximated system

To obtain an approximate system we will follow the procedure used in [50], [49]. Let

us define the operator P, in the following way

Pnf(x) _ Z kaQka, fk _ . f(l’)e_Qkadl’. (413)

|k|<n
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In later parts we will require some properties of the P, operator. First, it is obvious that

which follows from the orthogonality in L?(T¢) of the functions {e?****}, ;4. Let us define

C(n,d) = X<, 1 and observe that for m € N and 1 < p < o0 we have
o (Pnf) 2mik- m 2mik-
'ax“&tz ) Z kil"'kirnfke < (27T) Z |kllklm|‘fk|He Hp
m |k|<n |k|<n
P
>
) 3 1l < oyl 3 108 )
k|<n |k|<n

= (2mn)"\/C(n, d) [ Pufl, -

Thus for m € N and 1 < p < o0 we have

HPanWm«P('ﬂ‘d) < C(n,m,d)||Pf],- (4.14)

The obtained result is not surprising and could be justified based on the equivalence of
norms in finite-dimensional spaces. Also, we can easily check that the order of differenti-

ation and P,, when sequentially applied to function f : T¢ — C, is interchangeable

0 0f( . , .y .
( éi) |klz<l J (f —27rzkx dx/€27r7,kac _ Z 27T2k Z’ )e—kax dw/e%mkx

|k|<n

0 0
axl Z J f 72mkm dz’ 27mkx _ (axl Pnf> (.T)

|k[<n

Thus it is clear that the following relations hold:

P,divf =divP,f, P,Vf=VP.f, P.,Af=AP,f. (4.15)
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Before we define an ODE system we have to solve (for af ;, 7, np), we introduce the

following functions

UnJ(x,t) — Z ag,j(t)e%ikx, wn(x,t) _ Z ﬂ’?(t)GZTrikx’

bn(SU, t) _ Z ,Y]?;L(t)(ikam, pn(x’ t) _ Z T]Z(t)eQMkz.
|k|<n |k|<n

Thanks to the orthonormality of the basis {e?™**}, 1 in L?(T¢) we have

[oa®z = X5 lai;OF,  lwa@®3= 25 1B:OF, 1.0 = Y, hE@®F.  (417)

|k|<n |k|<n |k|<n
Additionally, we define the function 7, is the following way:

— ‘Ijt<Re(bn>>
Ty = B (Re(on)) (4.18)

The modification was introduced to guarantee positive signs of diffusive terms. Moreover,
the presence of Re(+) in the definition of 7z, allows us to deal with possibly complex-valued

solutions. Now we consider the following system of equations

o, = ((—Pn (Vg - Vva) + div (P, (D (vn))) + Vpn), ,e’Q”ik') , (4.19)
ofy = (—Pn (Uy - Vwy,) + div (P, (7, Vwy,)) — ke P, (wi) ,e‘zmk') , (4.20)

Oy = (—Pn (Un - Vby,) + div (P, (72, Vby)) — P, (bpwn) + P, (m|Dvn\2) ,6’2’”"“') (4.21)

complemented by the initial conditions

api(0) = (v, e 2™ ), Br(0) = (wo,e ™), 42(0) = (by, e >™*) (4.22)

and the following equation from which the pressure is calculated

—Ap, = div [Pn (v - Vo) — div (P, (i D(vy))) ], Ld pn(z)dr = 0. (4.23)
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The introduced system of equations can be represented in the following form

(0) k=1

d Jj=1,....d

di | Bkt | F((O‘Z,J)’;z s Bkt > (VK D, ,n,t). (4.24)
(Vi g1

To show the existence of a solution of system (4.19) - (4.23) we will show that the
right-hand side is locally Lipschitz continuous with respect to aj ;, S, 7y, so basically,

we need to estimate

| ( ,j’ﬁk 77]@ 7) (ak]7/8k‘ 77k 7)|

To this end, we introduce the following functions

$> _ 2 aZ:;HGZWikw’ CLJZL(.CL’) _ Z ﬁlzl,m€27rikx’ m Z ,ynm€2mkz (425)

|k|<n |k|<n |k|<n

We also introduce
[ = n/J (4.26)

Additionally, functions p™ are calculated with the help of the system (4.23), with a natural

substitution of functions on the right-hand side: v, ; — v";, w, — Wy, by — by
We start checking the local Lipschitz continuity by considering the term of the right-hand

side of (4.19) involving the pressure term. We see that

|((VP2)s, €)= (Vpn)ss ™) < e [, 1V (0 = pa) |, < [V (o2 = 22) -

From the basic theory of elliptic partial differential equations, the solution of (4.23) exists

and the following estimate holds

IV (p = pa) 5 < C(I1Pn (v - Vvn) = P (v - Vg ) |5

+ | div (P (,uQDv )) —div (Pn (,M_ELDUTIZ)) [2)-

(4.27)
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Let us analyse terms of the right-hand side of (4.27) separately. First by using the triangle
inequality, Holder inequality and (4.14) we get
| P (v2 - Vv2) = Py (v - Vo )|, < ||(02 = 0p) - Voo — oy, - V(v — 0|

n 2

(4.28)
< O([lonlly + loal,)

Un)Hg S an - UTILH2 :

< [Venl, i = only + lloal [V (e -

Now, we go back to analysing the second term of the right-hand side of (4.27). Again, by
using (4.14) we get

v (1 (2002)) i (. 1))

By using the triangle inequality and the Hélder inequality we obtain
div (Pn (,Tgpvi)) —div (Pn (;T}LDU}L)) H
2

< €| = uh)D(w?) = uEDw, —2)|

QG

uan

i - I N

With the help of (4.14) we have

i (P (1003)) — div (£ (520 ) ),

(4.29)
<01l -7, i, 1)
O (L2l [z = mi), + ]l =il
We see that (4.26), (4.9), (4.11) and (4.14) imply
- \I} R'e b}L 1bfnm + HbiL” mln + 20 bl
,LLTIL _ t( ( 1)) < 2 — 0 < - H HZ (430)
< (I)t (R‘e(wn)) 0 2wm1n Whin
and
- — U, (Reb?) — U, (Reb? ®,(Rew?) — &, (Rew!
M% o /L}L _ t( n) ;( n) . \Ijt(Reb:L) t( n)l t( 271)
2 ®;(Rew?) ¢, (Rew})®,(Rew?) |,
.+ C bl
(Reb}) — Wy(Reby)|, + 2 o )” ol |®i(Rew;) — ®y(Rew,)], -
min 5%Whin
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Now we use the fact that functions ¥,, ®; are lipschitz continuous and obtain

.+ C bk
-, <o (i b - B Oy s

1, ¢
(iwmin>

Thus by plugging (4.31) and (4.30) into (4.29) we get

W
2

v 1. (E010202) - 1, (E0102))|

(4.32)
< i 12 = ol + 12 8, + ok il )

where C1 = Ci([bh]y, [v2]y, bhyns whin). Therefore by using (4.32), (4.28), (4.27) with
the help of (4.25), (4.17) we get

V- (D X ol -all 17 - 3 bt o),
=1 [k|<n Ik|<n
where
d
02 :CQ Z |7271|27Z Z |OZ |2 Z Z |Oé m1n7 Whin
|k|<n j=1|k|<n Jj=1|kl<n

The verification of the Lipschitz condition for other terms is analogous to the conducted

calculations. We will give one more estimate

| (P (D) e 2“)—((%W%U )
Pu (i21D2?) = P (mlD0R ) |

By Holder’s inequality, we get

. i) - . (o)

<| |Da|Z, + x| Doz + i, | D2 — Dol

Now, based on (4.30), (4.31), (4.14) and (4.25) we get

v~ i i,
2 [o's)

P, (121DP2) = B (uHIDP ) |
2

< O Iek = ehl + 82—l + o~ 2, ),
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where

d d

-~ =~ n,1l n,l n,2
¢=C Z |7 ‘2a2 Z |ak,j’272 Z ‘ak,j‘2ab;in7w5nm
|k|<n =1 [k|<n =1 |k|<n
Because all right-hand side’s terms in (4.19) - (4.21) are locally lipschitz continuous,
the existence of a unique solution for some 7, > 0 follows from the Cauchy-Lipschitz
theorem. Now let us multiply equations (4.19)-(4.21) by €?>"** and make the summation

over |k| < n:

O + Py (0 - V) — div (P (Do) + Vi = 0, (4.33)
Oswn + P (0n - Vwy,) — div (P, (7, Vwy)) = =Ko P, (wh) (4.34)

v (0,2) = Povg(z),  wn(0,2) = Powo(z), 0,(0,2) = Pybo(x).

Now, by applying the divergence operator to equation (4.33) and by using (4.23), (4.15)

we get

divw, = 0. (4.36)

Moreover by taking imaginary parts of the system (4.33) - (4.35) and having in mind that
initial data is real-valued, it is easy to check that solutions (v, wy, b,) are also real-valued.
We will provide more details for v,. Let us apply Im to equation (4.33), multiply result

by Im v, and integrate over T¢ to obtain

(6; Imv,, Imv,) + (P, Imwv, - VRewv,),Imuv,) + (P, (Rev, - VImuv,),Imuv,)

+ (P, (nDImw,) , DImuv,) — (Im p,, div(Imv,)) = 0.

The last term on the left-hand side is zero due to (4.36). By (4.18), (4.9), (4.11) we have

1d
5 71T vnllz + i | DTm v 3 < [V Rewn, [ Tmwy 3

+ [Rewn o [T vy, [V Imow,,
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By using the Young inequality we get

1d
5@” Im v, |3 +

[y

in 1 2 2
07 10 v 3 <V Re v, [ T 03+ 5—— [Rew, 2 [Tm e, |3

min

t
TN v PN
2
Using the Gronwall lemma and the fact that initial data is real-valued we conclude that
| Tmov, ()5 =0 Vtel0,T,)

and thus that velocity is real-valued. A similar approach can be applied to w, and b,.

Thus, system (4.33) - (4.35) can be rewritten in a following way:

divoe, =0, (4.37)
Ovn + P, (v, - Vo) — div (P, (tnDvy)) + Vp, = 0, (4.38)
Opwn + P (0n - Vw,) — div (P, (1, Vwy)) = —k2 P, (W), (4.39)
Otbn + Po (Vs - Vb)) — div (P (12 Vb)) = =Py (bywn) + P (ptn| Dua|?) (4.40)
vn(0,2) = Pyvo(z),  wn(0,2) = Powo(z),  0a(0,2) = Pubo(z), (4.41)
where:
W, (by,)
= . 4.42

From the equation (4.16) it is clear that functions (v, wy, b,) are smooth with respect to
the spatial coordinates. By employing a standard iterative approach from the theory of
ODE’s (C* right-hand side implies C**1 solution) applied to the system (4.19)-(4.21), it

is easy to conclude that (v,,wy,, b,) are also smooth with respect to time.

4.2.3. Energy estimates

Before we start deriving energy estimates we need to establish some relations between

J* and the derivative. Let f : T — C, w : T¢ — C? such that P,f = f and P,w = w.
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Let us recall that f(k = §pu f(x)e ™ *dz. Then we have

Ty = 20 S (1 a2 )

ox; T;
! ! kezd:|k|<n

= 31 (L +4n k)7 e 2miky) f (k).

keZa:|k|<n

Now using the properties of the Fourier transform acting on a derivative we get

a;;fm): S (14 an?f?) 2k<§§>( )_ﬁ(g;:)(x).

keZd:|k|<n

Thus we have

VIf=JVf  DJf=JDf,  Jdivw=divJw,  AJf=JAf (443)

Furthermore, it can similarly be shown that

P,JSf = J°P,f. (4.44)

In the next part, we will be calculating various inner products in L?(T9). Thus to simplify
reasoning it is beneficial to observe that if the function f is a real-valued function then
J°f is also real-valued. Before we proceed with energy estimates we need to introduce
notation regarding constants dependent on time. In later parts of the proof positive

constants C(n1, ..., m,t) (dependent on the time) are such that

C(N1y ey Miny t) =6’(771,...,77m)(1+15)7 (4.45)

for some v € R. Let us apply the J* operator to equation (4.38), multiply the result by

J%v,,, and integrate over T?. From this we obtain

1d

o7 | T2 05 + (JEP, (v, - Vi), J*0,) — (J* div P, (1, Dvy) , J*0,)

= — (J°Vpy, JPvy,).
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Using properties (4.43), (4.44), integration by parts, and the fact that divwv, = 0 we get

1d

5% 12115 - (JS div (,uann) , Jsvn) I (JS ('Un . an) ’ Jsvn) ‘ (446)

[on]

Now using the Holder inequality and Lemma 1.3.2 implies

(T (Ua - Vva) , T )l < C vl [Vl . (4.47)

Using properties (4.43) and integration by parts yields

— (J2div (pn Dvy) , JPv,) = (J° (unDvy) , V (J°0,)) .

Now, we rewrite the expression in a way that will enable us to use the commutator

estimate:

(J° (tnDy) , VI*0,) = (pn D05, VI 05) + ([J°, pin] Do, V. J?0y) (4.48)

where [J%, p,| Dv,, := J*(pnDvy) — pinJ* Dv,,. We want to estimate the above expression
from below. Using the Holder inequality, Lemmas 1.3.3, 1.3.7, we get

([*, pn] Do, VJ*on) < C([Vinloo [VOnll goes + lpnll s 1V 00 0) [Von] s (4.49)

< C([Vinl o [on]

VUnHOO) IV,

s T |t Hs Hs -

For now, we will leave the inequality in the above form. By definitions (4.3), (4.9), (4.11)
and (4.42) we have

(1tn DT 0y, VI*0,) = (11n DT 00, DJ*0,) = pil, | Dvgle (4.50)

Let us rewrite the right-hand side in the following way

o (Jov), .+ (J*,), . (J*0,), . + (J50,).
D n 2 s = ] J ] J5t
Dl = 3 (g, )

.3

| —

-Zd: ((JSU")W ’ <JSU”)Z'J> + <(Jsvn)i,j , (Jsvn)m.) .

94



4.2. PROOF OF THEOREM 4.1.1

By performing integration by parts and using the fact that divv, = 0 in combination

with (4.43) and (4.50) we get

1
(4 DT 00, VT *00) 2 i [ V0

By combining (4.48), (4.49) and the above inequality, we obtain

t
Hmin 2
(0 D, Von) e = =05 Vg = ClIValley [val s [Vou] s
(4.51)

= Ol s IVORll g [V 0 g -

Using estimates (4.47) and (4.51) in (4.46) implies

1d 2 /l’fnin 2
2 [l + 22 | Vo |,
2
< C(IValo Vol 190 s + Dl 190 10+ e 190l ).

?{S in the following way

Now, according to Lemma 1.3.7 we can express ||V,

[Von]

2 2 2
Hs = an‘HSH - an‘H :

We can rewrite inequality in the following way:

]. d 2 /,(,t . 2 ILLt . 2
5 g Nonlzre + =55 loallgreer < =55 fvnll

(4.52)
+ C( IV bl [0l g5 [vnll o + Dt grs 170 ] o [vnll o + ol H%Hwa)

Now, we will proceed with acquiring the estimate on w,. Let us apply J° operator to the

equation (4.39) and take the inner product with with J*w,:

1d
57, Hwn‘

4.53
2dt (4.53)

JZLIS + (1 Vwn, V) e = — (Un * Vg, wy) e — K2 (wfwwn)Hs :

Proceeding as in (4.51), we obtain

(nVwn, V) s = (pnd*Vwy, J*Vwy,) + (J° (unVwn) — pnJ* (Vwy,) , J*Vw,) .
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Thus using the Holder inequality and Lemma 1.3.3 we get

?{5 -C Hvﬂn”oo Hwn|

Vwy|

(anw’m VWH)HS > :ufnin van|
— C||ptn]

Hs Hs

(4.54)

vwn”oo van|

Hs Hs -

Now, using the Holder inequality in combination with Lemma 1.3.2, we treat remaining

nonlinearities in a following way:

|(vn - Ve, wn) | < o s loon s 1Van] e (4.55)
Applying inequalities (4.54), (4.55), and (4.56) to (4.53) gives
1 2 t 2
2 |l + iy | Vesale < O IV htnlls Il [Vl
3
il aze [Vl 1901 + Jmle + Bl ol s [ 90 ).
Using Lemma 1.3.7, we can rewrite it in a more suitable form
1 d 2 t 2 < t 2 C V
2dt lewnlrs + Hmin [Wnlzrse1 < famin [wnll7s + IV in] o [wnll g lleon grosa
(4.57)
3
+ lpnll s IVl lwnll grosn + lwnllzrs + lvnl gs lwnll g lnl s )-

Now estimates for b,, will be provided. As before, let us apply J® operator to the equation

(4.40) and take the inner product with with J*b,,:

1d
5% an| ?{5 + (MHVbn, vbn)HS = = (UTL ’ me bn)Hs - (bnwm b”)HS
(4.58)

+ (tn D)%, bn) . -

Proceeding as before, with the use of Lemmas 1.3.3 and 1.3.2 we get:

|(Un = V0, b0) e | < [nll g [10nll o [ V00 i 5 (4.59)

| (s ba) | < C bl | nll o (4.60)

(10 Vb Vb0) gro 2 ity [ Va3 = C 1V o [0 10 V00 (4.61)
= Ot grs 1Vl [VOn | g -
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Now we provide the estimate for the last term of r.h.s. of (4.58). Using Lemmas 1.3.2
and 1.3.1 yields

‘ (/Ln‘D(Un)Pv bn)Hs

D(Un)m

< [pn s

< |t

HS

(4.62)

VUnHOO IV vy

Hs Hs

Finally, by using estimates (4.59), (4.60), (4.61), (4.62) in (4.58) and applying Lemma
1.3.7 we obtain

1d

by,
577 Ion 7

by

Hs + :U’rnln Hb |H5+1 = /J“mln ||b ‘ Hs Hs+1

Hs+c(rwn\ ™

et + [0a[7

)

By summing inequalities (4.52), (4.57) and (4.63) we get:

Vb, 10n]

(4.63)

by

byl

+ [ ] s Wnllgs + 1vnl s Hs Hs+1

VUTLHOO ||Un‘

+ [l s

2
Hs

?{s + H’fnin ”Una Wn, bn| ?{SH < :ufnin vawna bn‘

[vns W bnl

i
+0(|mn|

Voo + V| + IVbnllp) [ns wn, ba

Hst+1 + an7 Wn,, bn‘ ?’{s

me (
(4.64)
+ Hvﬂn”@ anv w’m bn|

et F Vs @y bl 34 (Vs i, b

HS
H5>7

2
1+ [[bnl

Unawnabn|

Hs Hs+1

VUnHoo ”Un‘

+ |l

2. Now let us see that by definition (4.42)

o+ [ wal

where Uy, W, b 3e = [vn]

and (4.9)-(4.12) we have

CID; (wn)Vwy,

Vtal., H v Lulba) ) j‘Pé(bw Wb)

)|, Bl T D)
O wmims ) (1980, + 1926, [V ],)
)

09]

Cwmin, ) ([V0n o0 + (binin + [bnll0) [Venllo,)

where constant C'(wmin, t) is as in (4.45). Lemma 1.3.4 yields

[Viin]o < Clwmin, 1) ([Vonlo + (bmin + (00|

we) [Veon].) -
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To simplify the expressions we will introduce the polynomial notation: for k € R, we

define Py (t) in the following way:

k/2
Pe(t) = (1 + [oa(®)7s + lwn(®) 77+ + 100 (B)1 7)™ (4.65)

Thus we can write
IV ity < Cwmins bmin, 1) Pr(t) (|Vbu |, + [Vwnl,,) - (4.66)

Now using (4.66) and (4.65) in (4.64) we get

d
. any Wn, bn|

dt
+0(|un|

+ Ba(t) (IVln o, + [Vwnll) [0n, wn, bl

Hs+1 ) .

By using the properties of Py(t) we can write

?{sﬂ < i P2 (1)

12115 + anin anﬂ Wn, bn|

‘vvnHoo + ”vwnHoo + ”vbn”oo) anawny bn|

Hs ( Hs+1 + P3(t)

(4.67)

Hs+1 + PQ(t) H'Urwwna bn‘

Hs+1

+ [ 4| VUn“oo Py(t) |vn)

HS

d
7. ”Una Wn, bn|

dt

+ P3(t) + (Po(t) + lpnl s Pr(0) ([Von o + [Ven | + [Vbnl,) [vns wns ball o )

?{s + anin an7wna bn‘

b o0 4 PA0) [l

(4.68)

Now, we will continue the proof assuming that s € (d d 4 1] - because in other cases we

272
have [Vf[, < C|f]

s and subsequent estimates simplify. Thus by Lemma 1.3.11 we

get:
d 2 t 2 t
At |Vns Wy bn | z7s F fiin [Vns Wy On [ o1 < priin P2 () + C'( Pa(2) [|0n, Wiy bn | grosa ( )
4.69
1—L(s—42
+ (1) + (Pat) + [l Pr(O) Py oy (0 [l et ol s ).
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In the above inequality term |u,|

auxiliary estimates that follow from Lemma 1.3.5, Lemma 1.3.4, (4.10) and (4.9)

1 1
19,8 < | l0) = 5]+ |30
Hs Hs
, 1
[s] Syt
< O[] 0+ B b+ |5t

< C (L4 [ball )™ ol e + €,

m+ Temains not estimated. First, let us consider three

(4.70)

where C' = C(s, byin, t) is a rational function dependent on time ¢, finite V¢ > 0 (see

(4.45)). Similarly from Lemma 1.3.5, Lemma 1.3.4, (4.12) and (4.11) it follows

' 1 ’ 1 1 1
q)t(wn) Hs b q)t(wn) %wfnin Hs %wrtnin Hs
1Y . 2
<ol(2)] O+l honlse + ]
t Cls) min || /s

< C (14 Jwnl o) enl o + €,

(4.71)

where C' = C(S, Wmin, Wmax, ) is as in (4.45). Now using the obtained estimates in com-

bination with Lemmas 1.3.1, 1.3.4 and definitions (4.11), (4.42) we can proceed with

estimates on | (i, ;. in the following way:

U, (by) ( 1 1 )
n s — <C \IJ bn s || =< + \Ij bn
ol = |5e3] <€ (bl s+ 190N 55
2 1
<C b)) s + [0 (b) e | ——
(5= 1t + 10 |55 )
< Gt (U 1l ) ™ 1Bl e + 1) - (14 feonl )™ ol + 1)

< C1Pyf42(1),

(4.72)

where C7 = C1(Wmin, Wmax, Omin, t) 18 as in (4.45). Now let us use estimate (4.72) in (4.69):

a
dt

2-3
Hs+1

+ Py(t) + (Pa(t) + Paga (1)) Py oy (2) [,
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Using the fact that for k; > ky we have Py, (t) > P, (t) and Young’s inequality we get

d
N ana W, b’n|

dt

2
Hs+1 < C(bminy Wmin, Wmax t)

?JS + anin ||Un, Wn, bn|

N ) (4.73)

Now, let us apply Young’s inequality to the right-hand side with coefficients

2364
Hs+1 +P3<t) +P2(t) ||U7’L7w’n7bn|

' <P2[s]+3+§(sg) (t) ana Wn, bn|

to obtain

t
Hmin

2

ZS + an7 Wn, an?{SJrl < C(bminu Wmins Wmax t)

[V, W, by |

7|

Now, let us introduce §(s) > 1 such that

QMQ:ﬂmm{&(ﬂﬂ+3+%(s—g))sf }.

[JIsH

Thus we have

d 2
% ana Wn, anHs +

t
Hmin

2

?{S-H < CV(bmina Wmin; Wmax, S5 t)PQIB (t) (474>

|Vn, Wi, b

Hence by definition (4.65) we get

t
'umll’l ana wn7 ani[s+1

2 (4.75)
< C<bmin7wmin7wma><7 S, t) (1 + anawnv aniIS)B

d
7 (1 - an,wn,anZs) +

By integrating from 0 to t the inequality follows

1
-B+1

)—B+1 < 1
—p+1

t
+ J C(bmim Wminy Wmax; S, T)dT'
0

(1 + ”an()) PnCU(), Pnb0| )_ﬁ-‘rl

2
Hs

(1 + an,wn,bn|25
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4.2. PROOF OF THEOREM 4.1.1

After some transformations, we obtain the uniform estimate for approximated solutions

2
Hs

H/U’NJ wna bn|

< 1 _q (4.76)

1
1-8
(U o)™ = (8 1) i i i 3,7

B—1

provided the denominator on the right-hand side is positive. Thus, let us define the
existence time 7' > 0 such that the following equality holds

)*64’1

(1 =271 (1 + ||vo, wo, bo 37

T
= (ﬁ - 1) J C(bminawmim Wmaxs S, T)dT~ (477)
0

By (4.77) in (4.76) we derive the estimate:

2.4+1 vielo,T]. (4.78)

?{s < 2 HUO,WO, b0|

[vn, Wi, b

Additionally (4.75) and (4.78) imply that:
T
f va w, an?{s-H dr < C (bmim Wminy Wmax HU07 Wo, bOHHs S, T) < 0. (479>
0

To show the continuity of the solution, the estimate in the norm L2(0,7T, H*~1(T?)) for
the time derivative of the solution is required. We will derive the estimate only for b,, as
the calculations for other variables are similar. Let us apply J*! to equation (4.40) and

calculate the inner product with ,J°7'b,

| @1bn]

?{s—l = - (Uann; atbn)Hs—l + (V : (,U/ann) >atbn)Hs—1 - (bnwn; 6tbn)Hs—1

+ (un\D(vn)F’ atbn)HS_1 .

Using the Holder and Young inequalities we get

i]sfl + [[brwn|

| 01bn| et IV (12 V03)]

25*1 + Hlun|D(Un)|2’

2 < c( 0,V

2
Hs—1 .

By Lemmas 1.3.7 and 1.3.8 it easily follows

ol < (10,0l +

2o [bnwnlie + al D) e ) (4.80)
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The most troublesome term to estimate is the last one on the right-hand side, so first let

us concentrate on it. Let us choose € > 0 in the following way

g€ (0,min{s — 4,1}) for d =2

) (4.81)
e=0 ford >3
Based on Lemma 1.3.1 we have
D1 < € (19 sy D]+ il 17D ).
e+t5—1 —€
By applying Lemma 1.3.1 to the last term on the right-hand side we get
ol D0l = € (17l g 1501 s, + iy |77 D0l ) 1D
et+g5—
Let us observe that based on Lemma 1.3.9 we have
7y < €1, (452)
c+§-1
|Dv|| 4 < C HJ%WH 2 (4.83)

Using the above estimates and Lemmas 1.3.4, 1.3.7 yields

e ) Il

[t D) Bl s < € (12t |72 20| + il o e
In view of Lemma 1.3.8 we get
Hﬂn|D(vn)|2‘ e-1 S C | n)| Hs Uy Hs Un|HS+1 .

Using the above result in (4.80) and Lemmas 1.3.2, 1.3.7 we obtain

| 01bn]

2
Hs

?{SH + an|12qs Wh|

by |

2
Hs

et + ]

by |

2
Hs

b < 0o

N 7 3 o T )

The right-hand side of the above expression is in L'(0,7T) (due to (4.78), (4.79) and

(4.72)). Thus the estimate was proven. To conclude the time derivative estimates are as
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4.2. PROOF OF THEOREM 4.1.1

follows

||atvm atwny atbn ‘|L2(O,T,H5*1(’]I‘d)) < C (bmina Wminy Wmax Hv07 Wo, bO‘

Hs»

s, T) < o0.

(4.84)

4.2.4. Passage to the limit in approximate system, regularity of solution

By estimates (4.78), (4.79) and (4.84) we can conclude existence of sub-sequence {ny}

(relabelled as n) such that:

Up — VU
w,b, > w,b
5tvn, at(JJ, @tbn i (9752}, é’tw, ﬁtb

/Un7w7 bn - /l}?w?b

weakly in L?(0, T; H3 ' (T)),
weakly in (0, T; H**!(T%)),
weakly in L2(0,T; H*~(T%)),

weakly= in L%(0,T; H*(T?)).

Additionally, from the Aubin-Lions lemma, it follows that

Unawa bn - U7w7b

Up, W, b, = v, w, b

for all s’ < s. It is easy to see that

strongly in L2(0,T; H¥*+1(T%)),

strongly in C/([0,T]; H* (T?)).

strongly in C([0,T7; H* (T%))

—~ —~ —~ —~
; =
oo oo
-~ (@)
N ~— ~~— ~—~

(4.91)

holds for all % < ¢ < s. Indeed, we see that with the help of the triangle inequality and

Lemma 1.3.2 we get

ltn = pill g = H \Ijt(b&;z (o:jt(b) — Uy (b) q)&)(:fu))q:tijg) L
<] 1) - w0l
O e e M e L R I ]
From (4.71) we see that sup,,cy ess supo.r ’ m ’ B

same reasoning as presented in (4.70), (4.71) we can conclude that ess sup;cpo 17 ‘
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and ess supyepo 7y [V (b(t))] o are finite. Thus, to prove (4.91) it is sufficient to show that

Di(wn), Wi(by) — Bi(w), Uy(b) strongly in C(0, T, H¥ (T%).

This, however, holds based on (4.90), (4.9), (4.11) and Lemma 1.3.6.
Having convergence results, we may pass to the limit in (4.38) - (4.40). It is easy to see

that v, w, b satisfy:

(Crv,w) + (v-Vo,w) + (pDv, Dw) = 0 Vwe HY (T, (4.92)
(0w, z) + (v Vw, 2) + (uVw, Vz) = —ks (w?, 2) Vze HY(T?), (4.93)
(0, q) + (v Vb, q) + (uVb,Vq) = — (bw, q) + (u|Dv|*,q) Vge H'(T?) (4.94)

for a.a. t € (0,7). We will provide more details for the most troublesome term. First, we

wish to establish the convergence

T T
|| GnlDof0) =% [ Do, v) e, (4.95)
0 0

where 1 € L2(0,T, H*(T%)). We see that

T

L " (Do, — Dv) (Do, + Do) 1) dt‘

JT (1n]| Dvn)?, ) dt—f

0 0

(ulDvf?,v) dt‘ <

[ = 100820 ]

0

Let us first focus on the first term of the right-hand side

T T
f wux%—wﬂx%+v»wd4<£)wnwux%—wnwzx%+wmﬂ¢bw

0
T
<cfnw
0

where s’ € (£, s). Using the Holder inequality and (4.89), (4.90), (4.91) we get

ws U = Ul e [vn + 0] g [0 d,

JT (nD(vn — v)D(vy, +v), 7)) dt'

0
T
<O(j%
0

N[

n—ao0

2
(1A dt> lvi = ] 2o 7 pr+1y — O

2
H

lzqsl U + |
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By using Lemma 1.3.4 we have

T

T
f (1 — 1) | DO, ) dt\ < f lttn — tll, Dol 1Dl 4], dt

0

T
< Clpn = ooy | 10lase 0lgs 915 dt.
0

Thus from (4.91), (4.88), (4.85) it follows

T
J ((kn = p) | Dv[?,90) dt| =5 0.

0

Therefore (4.95) is proven.

Now we will show that

who <w(tz) <o, ~—forae (x,t)eT?x[0,T] (4.96)
and
bt <b forae. (x,t)eT?x[0,T]. (4.97)

The argument is similar to the ones presented in Chapter 2 or [8]. The main difference
lies in the form of an approximate system i.e. the lack of certain cut-off functions in the
current formulation. Thus, we present below the adapted reasoning. We denote by u_
(uy) the positive (negative resp.) part of a function w. Then u = u; + u_. We test the
)— and obtain

equation (4.93) by (w — w!

min

(Wi, (w—wh)-) + (WVw, (w—wiy)-) + (,qu, \Y (w —ut )_)

min min (498)

% (W = W) -)-

= —Ko(w
Using (4.3) we get

1d
(@i (@ = Whin) =) = 57 1@ = whin) -z = K2 (W), (0 = i) -) -

Hence, using that 0 < p and dive = 0 in (4.98) we obtain

1d
5 77 1@ = i) 2 = 2 (@in)”, (@ = @) ) < =2, (@ = wlii)-)-

105



CHAPTER 4. EXISTENCE AND UNIQUENESS OF LOCAL IN TIME SOLUTIONS FOR H*(T%)
INITIAL DATA

We write the above inequality in the form

1d
52 I = i) [13 < —ha((W — Winin) (W + Whoi), (@ — Wgin)-)-

/

Based on (4.90) and Lemma 1.3.4 we have that w € L*(0,7, L*(T%)). Thus from the

above, we may derive the following estimate:

1d .

5%”(“1 - wmin)*”% S Hw + wfninHLOO(()’TLoo('[[‘d)) H(w - wfnin)*H%'
Therefore, as [(w(0) — w%,.)-]3 = 0 we obtain from Grénwall lemma that

[(w(t) — W) |3 =0Vte[0,T]. This implies the first inequality in (4.96).

min

If we test the equation (4.93) by (w — wf, )+ then we obtain

max

(w,ta (w - wfnax)Jr) + (vav (w - wfnax)Jr) + (,qu, \% (w - wfnax)+>

(4.99)
= _I{2(w27 (w - wfnax)-‘r)'
Proceeding as before, we get
1 d t 2 t 2 t 2 t
5%”(0‘} - wmax)‘i‘”? — K2 ((wmax) ) (w - wmax)‘i‘) < _’%Q(W ) (w - wma.x)‘i‘)
and
1 d t 2 t t t
5%”((’0 - wmax)'ﬁ‘HZ < _HQ((W - wmax)(w + wmax)? (W - wmax)-i‘)
= _'%2(((’0 + wfnax)’ ‘(w - wrtnax)-i"z)‘
Hence
1d
L -t <0 (4.100

Since [[(w(0) —w? .. ) 1|3 = 0 we obtain that |[(w(t) —w!,.)+]3 = 0Vt € [0,T]. This implies
the second inequality in (4.96). Now we will show the non-negativity of b. We test the
equation by (4.94) by b_ and we obtain

(b4, b_) + (VVb,b_) + (uVb, Vb_) = —(bw,b_) + (u|D(v)|*,b_).
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Using that 0 < pu, dive = 0, we get
(0b_,b_) < —(b_w,b_).
Finally, using the lower bound from (4.96), we obtain
d
—b_]3 < 0.
113

Since [(b(0))_|3 = 0 we have that |(b(¢))_[3 = 0 V¢ € [0,7]. This implies the

non-negativity of b.

Now we will show (4.97). For this purpose we test the equation (4.94) by (b — b, ).
Then we get
(b,tu (b - bfnin)-) + (UVb’ (b - bfnin)—) + (/‘LVb7 V((b - bfnin)—)) = _(bwv (b - bfnin)—)

+ (] D@)*, (b= b)),
(4.101)

The first term on the left-hand side is equal to

1d Wmaxbmin
Erl (I (( ; lv(b—bliﬁn)—)-

1+ wmaxﬁgt)5+

The second term of the left-hand side vanishes and the third one is non-negative. Thus

1d Wmaxbmin
57 (0= blo)-[15 — <<1 + ey (b— bﬁw)) < = (bw, (b = b))
Wmax 2l ) "2

Using the upper bound from (4.96) and non-negativity of b, we obtain

1 d t 2 Wmaxbmin t Wmax 3
— — . — — . < - — s )
2 dt ” (b bmln)* HQ ( ( 1,97 (b bmln)) (b7 (b bmln) )

1+ wmaXKJQt)E-i_ 1+ WmaxKat
and by definition (4.3) we have
wmaX
510 = b)) -2 < =0 = b)) |2-

1 + Waxkat
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and then 4[(b — bl )_[3 < 0. Since [(b(0) — b%,)-[3 = 0 we obtain that
|(b(t) — bt ;) |3 = 0Vt e [0,T]. This implies inequality (4.97).

Thus due to Definitions (4.11) and (4.9) and bounds (4.97), (4.96) we have

b
H=—=
w

and thus (v,w,b) solve system (1)-(4). Now we will show the continuity of the solution
in H* (T%) norm. It is clear that [H*~'(T?), H**'(T?)], = H*(T%). Thus from (4.86),
2

(4.87) and the Lions-Magenes Lemma (see Theorem I1.5.14 from [5]) we can conclude

that

(v,w,b) e C ([O,T]; Iz A (Td)) )

The uniqueness of the obtained solution will easily follow from Theorem 4.1.2.

4.3. Proof of Theorem 4.1.2

First, in order to have proper bounds on viscosity term p; = %, we would like to

conclude that

whin S wilt,z) < Wt bt <bi(t,z) forae (z,t)eT?x[0,T], j=1,2. (4102)

min max’

In view of the Lemma 1.3.4 we see that b; and w; are continuous functions. Suppose
> b(t*,x*) for some (t*,2*) € [0,T] x T such that
wi(t,r) > C* > 0, b(t,x) > CF > 0 for all (t,z) € [0,t*] x T?. Then, by following

that w!

min

> w;(t*,x*) or b .
the procedures starting from (4.98) and (4.101) we obtain the contradiction. To find the
upper bound on w; we proceed as in (4.99)-(4.100) (see also Proposition 3.3.1 in Chapter
3).

Let us denote 6, = vy — vy, §,, = wo — w1, O = by — by. Then differences (9,, o, d) satisfy

the following system of equations

(040, w) + (b—lDév, Dw) = —(1uVo,,w) — (6, Vo, w) — (ﬁDvg, Dw)

Wa )
b1d,,
+ < ! Dvl,Dw>,

Wiz

(4.103)
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0
(040, 2) + (bl Vi, Vz) = —(v1uVy, 2) — (6,Vwy, z) — (w_bVUJQ, Vz)
2

bs (4.104)
+ ( L le,Vz> — ka8 (wa + wr), 2),
W12
by Op
((315(51), Z) + ( Véb, VZ) = 'Ugv&b, ) ((SUVbl, Z) — (;ng, VZ)
2
+ < =V, VZ) — (Opw2, 2) — (b10,, 2)
w12 (4.105)

+ < | Duyl?, ) + <b—1D5v(Dv2 + Dvl),z>
) )

(i)
Waol1

Now, we test equations (4.103)-(4.105) with &, d,, d, to obtain an estimate of differences

in the L? norm. We will show the procedure for d, since the rest are analogous

O

b
2dt\|(5,,\|2 < 1v5,,,v5b> — —(1aVy, 8) — (8,Vby, 8,) — < VbQ,V5b>

b1,
+ ( ! Vbl, V&b) - (51,(,02,(51,) — (bléw,(Sb) + <w—b|DU2’2,5b>
2

Wiwa

bio
+ <Z—1D5@(Dv2 + Dvl),éb) — ( 1w \Dv1|2,5b) .
2

Waldy

Using (4.102) and the Hélder inequality we get

1d 1
5 103+ b VOIS < 1.1, 901, 6 + |

1061l 1762l V011
©¢]

1
+ [b1llo [0wlly [——{  [VOills Vs[5, + 01l 0w 05,
W1W2 || o

1 by
¥ ] |Dual% 16,15 + ]— 1D8,],|Dvs + Dol 16,

W2 | 0 W2 o0

2

o) Il 1Dl 1l 16

By (4.102) and Lemma 1.3.4 we obtain

1d

57 — 10613 + 1nin V0613 < 01 s (180]13 + 186]3) + C'(whin) [BalFrosr 166]15
Mmin 5 2 C t b 2 b 2 (S 2 anin 5 2
+ = VO + Clwnin) b1l 101l 002 + == Vb2

4 101l (1813 + 16613) + C(hy) s 0513
t
2 2 2 Hmin
+ Ol Pl (s + [onlen) 166]5 + 222 D3,
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+ C(whin) 01} e (0013 + 10]13) -

e vl

Thus the information about the regularity of the solutions yields

1d
5 I8 + b V8013 < Golt) (1013 + 16,15 + 13,13)
(4.106)

t
Hmin
+ 23 (IVaz + [Voulz + [Vde]2)

where Gy, € L'(0,T). Analogously, there exist functions G,,, G, € L'(0,T) such that

1d
5 77 192 + i Voulls < Gu(®) (16ulls + 60l + 106]12)
p (4.107)
+ =3 (IVauz + [Voulz + [Vde]2)
ld 2, .t 2 2 2 2
5 77 19015 + 1iaial V82 < Gu(®) (160]15 + 603 + [36]15)
(4.108)

t
Hnin
+ 52 (IVa 3 + [Vl + [Va3)

Summing (4.108), (4.107) and (4.106) we get

| =

(16015 + 1015 + 186]3) < G(®) (103 + 1015 + 164]5) ,

N | —
QL

t

where G = G, + G, + Gy € L'Y(0,T). From the Gronwall inequality it follows that
§,(t,x) =0, 0,(t,z) =0, 6(t,2) = 0 for a.a. (x,t) € T¢ x [0, T]. This concludes the proof

of the uniqueness.



Chapter 5

Existence of a weak solution

In this chapter, the existence of a global weak solution to Kolmogorov’s model of
turbulence on torus will be shown. Recently in [8] the analogous result was shown in the
case of bounded domains. The used methodology exhibits an additional layer of complica-
tion due to the imposed boundary conditions. To better understand the important steps
in the developed approach, the chosen domain is the torus. Chapter’s contents follow
the considerations of [8], providing additional justifications when needed. The chapter is

based on [28].

5.1. Formulation of the theorem

Assume that ) = ]_[?:1(0,27T), T > 0 and QF = Q x (0,T). Here, vy, K1,..., ks are
positive constants. For simplicity, we assume that all constants except of ko are equal to
one. The reason is that ko plays an important role in a priori estimates.

Now, we specify the initial data. Let us assume in a standard way, that the initial

condition for the velocity field fulfils
v € L3, (). (5.1)
For the turbulent kinetic energy, we assume that initially it is as follows:

bo S LI(Q>, In bo € L1<Q>, b(] > 0. (52)
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Finally, the initial values of the dissipation w are as follows:

Wo € LOO(Q>, 0 < Wmin < Wy S Whax < 0.

(5.3)

Now, we are ready to present the main theorem, which states the existence result to the

system (1)-(5).

Theorem 5.1.1. Let us assume that the initial data satisfy (5.1)-(5.3). Then, there ezists

a quadruple (v,b,w,p) such that

1
ve POTIWED) 0 WHO.LW@)  foraiige [117)
bee,
oibe M (0, T, W=19(Q)) forallge |1, %) ,
(16
pe L1(0,T, L)) for all q € 1’ﬁ) ,
1 -1 80
EeWh (0,7, W 1(Q)) for all g€ |1, 7—9),
1
bw e L0, T, Wh(Q)) for all g € |1, g),
Wmin Wmax

<w< almost everywhere in Q7

I+ KJQWmint h h 1+ K2wmaxt

where, € was defined in (1.2) and

In addition, the pressure p can be decomposed as p = p1 + po2, where

16

p1 € LY(0, T, L)) forall qe [1, ﬁ) ,

po € L3P (o,T, L3/3(Q)) .

After denoting
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(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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the quadruple (v,b,w,p) satisfies the following identities:

f (v, wy — (vu, Vw) + (uD(v), D(w)) dt = f (p, divw) dt
0 0 (5.15)

Vwe L* (0,7, W' (Q)) ,

f (OE,z) — (v(E+p),Vz)+ (Vb Vz) + (uD(v)v,Vz)dt = —J (bw, z) dt
0 0 (5.16)

Vze L* (0, T,W"*(Q)),

T b T
f (Ow, z) — (vw, Vz) + (M — Vb, Vz) dt = —@f (w?, 2) dt
0 w 0 (5.17)
Vze L” (0, T,W'*(Q)),
with the initial data fulfilling
Tim Jo(t) — wol, + Jo(t) — ol + [5(¢) — byl = 0. (5.15)

Moreover, the following inequality holds:

L (by, 2) + (uVb, Vz) — (vb, V2) zdt >L (=bw + p|D(v)[*, 2) dt (5.19)

Vze C(0,T,W"*(Q)) such that z >0 almost everywhere in Q.

In order to prove the above result, we will establish several existence results to auxiliary
problems, which approximate the problem (1)-(5). Using established estimates in those
approximations, it will be plausible to obtain the existence result of the considered system.

Now, we will focus on outlining auxiliary lemmas and notation.

5.2. Proof of Theorem 5.1.1 and auxiliary Theorems

The proof will be divided into subsections to provide a more transparent view of each
step. Firstly, the additional notation and facts relevant to subsequent considerations will

be provided. Next, the solutions to approximated systems will be obtained.
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5.2.1. Auxiliary results and additional notation

To define approximate problems, we introduce the cut-off function

s if |s| <m
Ton(s) = : (5.20)
msgn(s) if |s| >m

Now, we define the function ©,,, which is the primitive function of 7,,:
On(s) := f T, (T)dT. (5.21)

Next, we consider a smooth, non-increasing function G, such that G(s) = 1 when s € [0, 1]

and G(s) =0 for s = 2. For m € R, , we define

Gls) = G (i) (5.22)
m
and we denote
Ln(s) := f G (T)dT. (5.23)
0
In order to avoid the confusion, we define z, = max{z,0} and z_ = min{z, 0}.

Additionally, by {w;}?, we denote an orthogonal basis of W;?(2), which is also or-
thogonal in L2, (such a basis exists due to Lemma 5.2.5). By {2;}%,, we denote an
orthogonal basis of W12(Q2), which is also an orthogonal in L?(().

In the proof of the main theorem we will need to reconstruct the pressure. The

following lemma will enable us to do so:

Lemma 5.2.1 (see Lemma C.1 in [6]). Let q,q" € (1,0), and such that % +§ = 1. Then,

there exists a linear, bounded operator
L: L1077 - LYQ), (5.24)
such that for all ¢ € W7 (Q) and any fived B € LA (Q)3X3 the following relation holds:

(L(B), Ap) = (B, V), L £(B)dx — 0. (5.25)
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Proof. For B € D(Q)%*3 we set the system

AL(B) =divdivB in Q, (5.26)

f £(B (5.27)

equipped with the periodic boundary conditions. From the classical theory of the Pois-
son equation, the solution to system (5.26)-(5.27) exists and is smooth. Thus, we can
write £(B) := (A) "divdiv B. Operator £ is linear and continuous as a mapping from
Wha ()33 to WHe(Q) for all g € (1,00). We also see that multiplying the equation (5.26)
by arbitrary ¢ € W29 (Q), and integrating by parts four times, we get (5.25). Now, we
focus on showing the boundedness of the operator £ : L4 (Q)**® A D (Q)*** — L1(Q). To

do this, we need to find a space-periodic ¢ such that

= |L(B)|"2L(B IQIJ |L(B)|"2L(B)dr  in €, (5.28)
f wdr = 0. (5.29)

From the L? theory for the Poisson equation, there exists a constant C' > 0 depending

only on €2 and ¢ such that

q

f V2|7 da < Cf ‘|£(B)|q‘2£( f |L(B)|"2L(B)dz| dx
0 Q 19

| ez,

where % + & = 1. Since B is smooth, the integral on the right-hand side is finite for any

(5.30)

q € (1,00). Now, plugging (5.28) into (5.25) we get using of the fact that {, £(B)dz = 0
and (5.30), the following inequality:

L L(B)|"dz = (B, V*¢) <[ B], [V*¢], < CIB], I£(B)]5

We obtained |L£(B)|, < C|B], for B € D(Q)***. Since D(2)*** is a dense subset
of L9(€2)**3, the operator can be uniquely extended to £ : L (Q)**® — L9(Q). Moreover,

the system (5.25) can be established for B € L4()3*3 by considering a sequence of smooth
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{B"} such that B — B in LI(2)>*3 and using the weak convergence. This completes
the proof. n

For the completeness of the presented arguments, we recall the Div-Curl lemma.

Lemma 5.2.2 (see:[44, 37| ). Let Q be an open set of RN, N > 2. Let w be a function
such that w : RN — R. We denote

= 6w1 . 0w1 8wj

div(w) = ; 72, Cij(w) = o, — 22,

Let p,q > 1 such that é + % — 1. For any n, let a™ € [LP(Q)]Y, b € [L4(Q)]Y with the

properties
a" "= a  weakly in[LP(Q)]V |
VP2 weakly in[L(Q)]Y
{div (a™)})_, lies in a compact subset of W~'7(Q), (5.31)
{C(")}”,  lies in a compact subset of W~ 14(Q)NV*N, (5.32)
Then,

a"b" "= ab in the sense of distributions.

Now, let us formulate a simple corollary of the Vitali convergence lemma.

Lemma 5.2.3 (see Corollary 4.5.5 in [4]). Let Q = RY be bounded and u, : Q — R be

a sequence in LP(Q)) for some p > 1. Suppose that

1. u, — u almost everywhere in 2,

2. the sequence u, is bounded in LP ().

Then,

U, = u  in LT(Q) for all 1 <r <p.
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Lemma 5.2.4. Let p,q € (1,00) such that % + 113 < 1. Moreover, we assume that

Up — u  weakly in LP(Q) and Uy — U

strongly in LY(Q).
Then,

Uy — uv  weakly in L*(Q),

where * =1 41
s p g

Proof. Let s' be such that 5 + % = 1. We see that § + i + % = 1. Additionally, let
¢ € L*(Q). Then we have

f UpUppdr = f Uy, (U, — V) pdx + f UpvpdT.
Q Q

Q

The first integral’s limit is zero due to the strong convergence of v,,, boundedness of wu,,
and the following inequality:

J Up, (U, — v) pdx
Q

< [unl, lvn = vl lly, = 0.

Due to the fact that vy € LP'(Q), where 4

7= ﬁ + %, and the weak convergence of u,,, we
have

J Upvpdr — f uvpdr.
Q Q

This completes the proof of the lemma.

[l
Lemma 5.2.5 (see:

Theorem 2.24 in [41]). There exists a family of functions
N: {alya27a37

...} such that

— N is an orthonormal basis in L3, (Q),

— ;e C%(Q),

— N is an orthogonal basis in W,.2(Q).

Lemma 5.2.6 (Aubin—Lions-Simon, see: Theorem 11.5.16 in [5]). Let By € By < By be

three Banach spaces. We assume that the embedding of By in By is continuous and that

117



CHAPTER 5. EXISTENCE OF A WEAK SOLUTION

the embedding of By in By is compact. Let p, r be such that 1 < p,r < oo. ForT > 0, we
define

dv

e L (0.T, Bg)}.

Ep,'r = {U e L? (O,T, Bo) ,
i) If p < o, the embedding of E,, in L? (0,T, By) is compact.

i) If p= o0 an if r > 1, the embedding of E,, in C°(0,T, By) is compact.

Lemma 5.2.7 (see: Chapter 1.2.b in [25|). Let X be a Banach space, T > 0 and
1 <p<oo. Letf, > finLP0,7,X). Then, there exists a subsequence f,, such

that f,, — f in X almost everywhere.

5.2.2. k-approximation

In order to prove Theorem 5.1.1, we will establish a series of existence results to

approximate problems. We consider the following problem:

vy + div(Gy, (|v]?) v@v) — div (T} (u) D(v)) = —=Vp, (5.33)
wy + div(wv) — div (ng) = —kow?, (5.34)

by + div(bv) — div (gvza> = —bw + Ty ()| D(v)|?, (5.35)

dive = 0, (5.36)

in OF, where u = g The system is equipped with the periodic boundary conditions and

the following initial condition:

1
Vjt=0 = Vo, Wj=0 = Wo, bjt=0 = b’é(a:) = bo(z) + 7 (5.37)

The following theorem states the existence result for this system:
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Theorem 5.2.8. Let us fir k € N,. Then, there exists a triple (v,b,w) such that

ve L2(0,T, Wi2() n WH(0, T, W;2(Q)), (5.38)
be L9 (0,7, W 9(Q)) n L* (0,T, L'()) forall g € [1, Z) (5.39)
e LY (0,7, W9(Q)) for all q [1, %), (5.40)
we L*(0,T,W"*(Q)) n L” (0, T, L*(%)), (5.41)
1

O e LI(0,T, W19(Q)) forall g [1%) (5.42)
o min < M lmost everywhere in Q7 (5.43)

1 + Kowmint 1 + Kowmaxt

1

— <b, almost everywhere in Q7 (5.44)

k (]_ + :‘ig(x)mint)E

which solves the problem (5.33)-(5.37) in the following sense:

(v, w)y — (G (|v|2) v @, Vw) + (T}, (1) D(v), D(w)) = 0 (5.45)
Vwe WH(Q) wa. te(0,T),
(by, 2y — (bv,Vz) + (UVb, Vz) = (=bw + T, () |D(v)|?, 2) (5.46)
Vze WhP(Q) a.a. te (0,T),

(Wi, z) — (wv, V2) + (uVw, V2) = —ks (w?, 2)

(5.47)
Vze WH(Q) a.a. te(0,T),
where p = g The initial data are attained strongly in the following sense:
B [o(t) = voll, + w(t) = woll, + [b(£) = b1 = 0. (5.48)
Moreover, for all X € (0,1], the following (k-independent) estimate holds:
sup ([b(&)] + [ (&)1 + [o(®)]3) + J (1+07") T()|D(v) P dwat
te(0,7) QT
1 8_
i Jﬂ pirx [V 1 [Veof? o5t (5.49)

-1
< C()‘ 7U07b07w07wmin7wmax)-
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Moreover, the following inequality holds for almost all times t € (0,T):

0

> %f (\/Bw, np) dr + (\/%, g0> Vo e D(2),¢o = 0.

0

(x/@, so) — Lt <\/5v, w) dr + f (;/—fvz), w) dr

(5.50)

5.2.3. (n,k)-approximation

In order to prove Theorem 5.2.8, we introduce the next level of approximation. To
define this approximate problem, we first smooth out the initial conditions for b and v.

First, we find a sequence of smooth, non-negative functions bj such that
by — by strongly in L'() (5.51)
and define
bt = b+ . (5.52)

Now, let {w;}2, be a smooth basis of W;:?(Q) that is orthonormal in L*(Q). Tt exists due
to Lemma 5.2.5. Using the chosen basis, we introduce the approximated initial condition

for velocity v™ as

Having approximated initial conditions, we consider the following problem:

v + div(Gy, (|v]?) v @) — div (T}, (&) D(v)) = —Vp, (5.53)
wy + div(wv) — div (T,, (1) Vw) = —Kaw?, (5.54)
. . o T (™) D(v)]*
by + div(bv) — div (T, (1) Vb) = —bw + T+ D)2 (5.55)
dive =0 (5.56)
in Q7 where
b 1
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Additionally, the problem is equipped with the periodic boundary conditions and the

following initial condition:

Vjt=0 = US, Wjt=0 = Wo, b‘tzo = bg’k(x) (5.58)

The following theorem states the existence result for this system:

Theorem 5.2.9. Let us fir k € N, ne N_. Then, there exists a triple (c,b,w) such that

ce Wh*(0,T)", (5.59)
be L? (0,T,W"(Q)) n L* (0,T, L*(2)) (5.60)
obe L (0,7, W), (5.61)
we L*(0,T,W"(Q)) n L” (0, T, L*()), (5.62)
owe L*(0,T,W~1%(Q)) , (5.63)
_ Wmin oy g max almost everywhere in Q7 (5.64)
1+ RZWmint 1+ '%QWmaxt
1
—<b almost everywhere in Q7 (5.65)
k (1 + I{meint)@
which solves the problem (5.53)-(5.58) in the following sense:
(U,ta wl) - (Gk (’U’2) VW, le) + (Tk (:un) D(U), D(wl)) =0 (5 66)
foralli=1,...,n
T (u") | D(w)|*
(bt,zy — (bv,Vz) + (T,(u")Vb,Vz) + (bw, z) = < ,Z
¢ 1+ TL_1|D(U)|2 (567)
Vze WH(Q)a.a. te (0,T),
{wy,2) — (W, V2) + (T, (1")Vw, Vz) = —ky (W, 2
t 2 (&52) (5.68)
Vze W (Q)a.a. te (0,7T),
where p" = f + % and
v(t,z) = > ci(tywi(x). (5.69)

~
Il
—

121



CHAPTER 5. EXISTENCE OF A WEAK SOLUTION

The initial data are attained strongly in the following sense:

lim [o(t) = vg |, + o (t) = woll, + [b() = b5™ |1 = 0. (5.70)

t—0+

Moreover, the following inequality holds for almost all times t € (0,T):

(\/@a ‘P) - Lt (\/Bv, Vap) dr + Lt (Tn(u”)V\[b, Vgo) dr

2_%Jt<\/gw,cp>d7'+<\/1)87,g0) Vo e D(Q), ¢ = 0.

0

(5.71)

5.2.4. (m,n,k)-approximation

Once again, we will approximate the initial data for the turbulent kinetic energy. We

m,n,k
bO

introduce in the following way:

m

bp = 05", 2,

i=1

where {2;}°, denotes the orthogonal basis of W'2(2) and orthonormal in L?(§2). Using

this, we consider the following problem:

v + div(Gy, (Jv]?) v@v) — div (T}, (™) D(v)) = —Vp, (5.72)
wy + div(wv) — div (T, (™) Vw) = —kow?, (5.73)
. ) T, n,m\| 1) 2
by + div(bv) — div (T, (™™) Vb) = —bjw + 1k—(kﬂn—1)||D((vU))\|2 ,  (5.74)
dive =0 (5.75)

by
w+

in O, where p™™ = + % Additionally, the problem is equipped with the periodic

1
m

boundary condition and the following initial condition:

Vji—o = Vg, Wj—o = Wo, bji—o = by (). (5.76)

The following theorem states the existence result for this system:
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Theorem 5.2.10. Let us fit k € Ny, n € N, and m € N, such that m > wpax. Then

there exists a triple (c,d,w) such that

ce Wh*(0,T)", (5.77)
de Wh*(0,T)™, (5.78)
we L*(0,T,W"*(Q)) n L” (0, T, L*()), (5.79)
dwe L* (0,T,W~%(Q)) , (5.80)
ﬁ Sw< % almost everywhere in Q7 (5.81)
which solves the problem (5.72)-(5.76) in the following sense:
(ve, w;) + (T (W™™) D(v), D(w;)) = (Gy, (\'U|2) v ®v, V) (5.82)
foralli=1,...,n,
Ty (u™m) | D) )
6b,z—b,Vz+Tn n’me,Vz‘-Fb yZi) = y 2§
(@b, 2) = (00, V20 + (T 90,950 + (b ) = (G 2 0L -
foralli=1,...,m,
(Wi, 2y — (wv, V2) + (T, (W™ )Vw, Vz) + kg (w?,2) =0 (5.84)
Vze WH(Q) a.a. te (0,T),
where
b1 5.85
T R (5-85)
v(t,z) = > ei(tywi(x), (5.86)
i=1
bt, ) == Y di(t)zi(x). (5.87)
i=1
The initial data are attained strongly in the following sense:
Tim [[o() = vl + [w(t) = wl, + [b(t) = 654 = 0. (5.89)
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5.2.5. Proof of Theorem 5.2.10

Proof of Theorem 5.2.10. Let us recall that {z;}?, and {w;}, denote bases of W1%(Q)
and W32 (Q), which are orthogonal in L2(Q) and L2 (), respectively. The proof relies

on the Galerkin approximation method. We look for (vl, W, bl) given as

Vit z) = d(twi(x), (5.89)

i=1
bt ) = > di(t)z(x), (5.90)

i=1

!
W t,2) = 3 el (1) () (5.91)

i=1
and we require that coefficients ¢! = (ct,..., ), d' = (d},...,d.), e™ = (e},...,¢}) solve

the following system of ordinary differential equations on (0,7):

(@tvl,wi) — (Gk (‘vlf) vV, Vwi) + (Tk (ul) DY), D(wi)) =0

foralle=1,...,n,

(5.92)

Ty, (Ml) |DUZ|2
- 1 A N7l , ! ! N
(&b,z,) — (bv , sz) + (Tn(,u A sz) + <b+Tm(w+) T ADE TL_1|D'UZ|2’ZZ =0 (5.9%)
forallz=1,...,m,

(ﬁtwl,zi) — (wlvl, Vzi) + (Tn(ul)le, VZZ') + Ko (Tm(wl)wi,zi) =0

(5.94)
foralli=1,...,[,
where
QS (5.95)
a wh+ L n '
We set the initial conditions for (¢!, d',€') given by
n m 1
‘(0) = Z(Ugawi)wiv Z bm"k Dz, WH(0) = Z(wo, %) 2. (5.96)
=1 i=1 i=1

124



5.2. PROOF OF THEOREM 5.1.1 AND AUXILIARY THEOREMS

The existence of a solution to (5.92)-(5.96) on some small time interval follows from
Carathodory’s theorem. Using estimates which are established below, a solution can be

extended to a time interval [0, 7).

l-independent estimates

Multiplying the equation (5.92) by c!(t) and summing from i = 1 through I, we get

%%hjl”% - <Gk <‘UZ‘2> vl ®1}l’vvl> + (Tk ('ul) D(Ul),D(Ul)) -0 (597>

We see that

(Gk (‘vlf) ! ®vl,Vvl> = % (Gk (’vlf) v,V |vl’2> = % (vl,VFk (’vlf))
= —% (divvl,Fk (‘vl|2)> = 0.

Thus, integrating (5.97) from 0 to 7" we have

sup (015 + | TL)IDofdad < Cl,). (5.95)

te(0,7)

Using the orthonormality of the basis {w;} in L?(£2), we deduce that

sup | (t)] < C(Jlwoll,). (5.99)
te(0,T)

From the equation (5.92) and the orthonormality of the basis, one can easily deduce

+[(7i () DY), D(wy))]

V)| + X 1 @] (T (1) Dlwy), Dw)

|0ycl| < ’(Gk (‘vl|2) 0! ®vl,Vwi>
<5l(e ()

Now, using (5.20), (5.23) and the inequality (5.99), we get

i < C (k) [Vwily + Cln, k) [V 3.
Using the fact that |Vw;|, < C(n), we get

sup |0, (t)| < C(n, k). (5.100)

t€(0,T)
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Now, multiplying (5.93) by d'(t) and summing from i = 1 through [, we obtain
(0!, 0") — (B!, V') + (T (") VY, Vb)

B bl T ( l>+ Tk (MZ) |Dvl|2 bl (5101)
a A T D )

Using the fact that divo! = 0 and the definition (5.20), we have
1
(o', 6') + = (W', V') < (kn, V). (5.102)
n
Thus, by the Young and Gronwall inequality from (5.102) we deduce

T
sup B2 + J IVH 2dt < C(k,n). (5.103)
te(0,T) 0

Using (5.103) and the orthonormality of the basis in L?(£2), we deduce that

sup ‘dl| < C(k,n). (5.104)
te(0,T)

Now, by equation (5.93) and the orthonormality of the basis in L?(2), we have

|0udl| < [(V, V)| + [(Th (1) VY, V)| + [(=, T (W), 1) |
Ty (i) |Do'f
- (1 + n_1|Dvl|2’Zi

< [, o 1920+ 0 [, 192 + )

+ [Tk () 1DV Naill

< 6], o], 1V 2l + 1 sup |d'| Y[V, 1V 2l +m 0], 2,
te(0,7) j=1
+k T Vw3 |z, -
s | j;! wj3 24l
Thus, using (5.104), (5.103), (5.99), (5.98) yields

sup |0,d'| < C(k,n,m). (5.105)
te(0,7T)
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Now, multiplying the equation (5.94) by e!(t) and summing from i = 1 through [, we get

1d

Eanng + (W', VW) + (T (1) Vo', V') = —ky (Tn(Whw,,w') . (5.106)

From dive! = 0 and the fact that the right-hand side is non-negative it follows

1d

1
12 I o, |
§dtHw HZ—I-E(Vw,Vw) <0.

Thus, integrating from 0 to T gives
sup [W/(Off + | |V Bdodt < Cla) (5.107)
te(0,7) QT

Now, using (5.107) and the equation (5.94), we can deduce that
T 2
f HatleW—m dt < C(n,m). (5.108)
0

Indeed, let us consider ¢ € W'?(Q) such that [¢[, , = 1. We can write ¢ in the following

way:
!
P = Z 0:zi + 7,
i—1

where (, z;) = 0 holds for i = 1,... 1.

l

‘(atwl,(p){ = <atw172<9¢2¢>
i=1
l

< (wlvl,VZHizZ)

i=1

!
(Tm(wl)wﬂr, Z Qizi> |
i=1
!
\V4 2 Qizi

i=1

!
2,0z
i=1

l
+ <Tn(,ul)le, \Y% Z 922’7,> ‘

i=1

+ Ko

l
AV Z 91‘2@'

i=1

< [l 1], +n [V,

2 2

iy o]

2

127



CHAPTER 5. EXISTENCE OF A WEAK SOLUTION

Due to HZLI Oizil| <
2

I
lielly and [V 35, 6 <
Bessel inequality and || 3, 62,3 + [V X, 6,23 = H2i=1 0,2

||, , (which both hold thanks to the

2
L, S ¢l ,), the Young
inequality and (5.99) we get

’(atwla 80)‘2 <C HWZH H90H1 2t C(n valHQ HSOH1 2t C(m leHQ HSOH2
Thus, we get
Hé’tlez_m = sup |(0twl,cp)‘2 < C(n,m leH2 + C(n HleHQ.

eeW12(Q),llpl; o=1

Finally, using (5.107) we deduce (5.108).

Taking the limit [ — o

Using estimates (5.99), (5.100) and (5.104), (5.105), we can find a subsequence (which

we do not relabel) such that
c —* ¢ weakly* in W (0,T)",

d —*d weakly* in WH*(0,T)™.

Using the Arzela-Ascoli theorem and estimates (5.100) and (5.105), we conclude that
¢ —c¢  strongly in C(0,7)",

d —d strongly in C'(0,7")™.

Based on definitions (5.89), (5.90) and the above convergences we deduce the existence

of a sequence such that

vl > = 2 Ciw; strongly in C'(0, T, W32()), (5.109)

v —b= Z d;2;i strongly in C(0, T, W'2(Q)).

128



5.2. PROOF OF THEOREM 5.1.1 AND AUXILIARY THEOREMS

Using (5.107) and (5.108) and the Aubin-Lions lemma we obtain

wh —=* w weakly* in L* (0,T; W"?) n L (0,T; L*(Q)) (5.110)
Oyt — yw weakly in L* (0, T; W~"2(2)), (5.111)
wh - w strongly in L* (0,T; L*(Q)) . (5.112)

Having the above estimates, it is easy to identify the limit of the system (5.89)-(5.96) to
get

(Orv,wi) + (Ti (B™™) D(v), D(w;)) = (Gk (Jv]*) v @ v, V) (5.113)
foralli=1,...,n,

B )
1+ n*1|Dv|2 ’ (5114)

foralli=1,...,m,

(¢, z;) — (b, Vz;) + (T,(i™™)Vb,Vz;) = (—b+Tm(w+) +

(Ow, z) = (wv, V2) + (T,,(1""™)Vw, Vz) = —ka (T (w)wy, 2) (5.115)

for all z € WH(Q),

where

b, 1
e = S
W++E n

To obtain the system (5.82)-(5.84), we show the bounds for w. This will allow us to
replace ™™ with p™™ in equations (5.113)-(5.115). Additionally, we will be able to

replace T, (wy) and T, (w) with w.

Minimum and maximum principle for w

We apply w_ as a test function in (5.115) and obtain

Ow,w_y — (wu, Vw_) + (T, (1™™) Vw,Vw_) = —ky (T (w)wy,w_) .

We see that the right-hand side of the above equality is equal to zero and thus
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Using the fact that dive = 0 we conclude that the second term is equal to zero. Addi-

tionally, using the non-negativity of the second term, we finally get

d
w3 <0 so vte (0.7) Juo-(t)I3 = 0. (5.116)

Thus, by (5.116), we conclude that w > 0 almost everywhere in Q7. From this we see

that g™ = p™™. Hence we can rewrite (5.115) in the following way:

Ow, z)y — (wu,Vz) + (T,(u"""™)Vw,Vz) = —ko (Tr(w)w, z
(O, z) = ( )+ (Tn(p™™) ) 2 (T (w)w, 2) (5.117)
for all z € Wh*(Q),

Similarly, from (5.113)-(5.114) we get (5.82)-(5.83). Now, we will show the upper bound

on w. Let us first test the equation (5.117) using (W — Wmax) .

<6’tw, (w— wmax)+> — (wv, V(w— wmax)+)
+ (T, (™) Ve, V (0 — Wnax) ;)

= — kg (T (w)w, (W — Winax) ) -

From this and the fact that dive = 0 we have

(0 (W = Wmax) 4 » (W — Winax) 4 ) + (V (0 = Wmax) , ¥, (W0 — Winax) ;)
+ (T, (™) V (0 = Winax) 1 » V (W — Winax) )

= ks (Tn(W)w, (W — Wiax) ;) -

Since divv = 0 this gives us the following inequality:

__” (w - wmaX)+ Hg S —HK2 (Tm(w)wa (W - wmax)+) <0

so Ve (0,T) |[(w(t, ) — wmax)+“2 =0.

Thus, w < wmax almost everywhere in Q7. Let us recall that m > wpae and thus from

(5.117) we get

(Ow, z) — (wv, V2) + (T, (W"™)Vw,V2) = —ky (w?, 2)  forall ze W'?(Q), (5.118)
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which is exactly equal to (5.84). Now, let us test the equation (5.118) using

_ Wmax .
(w 1+HQUJmaxt> +.

Oy, b max — (wo,V b max
1+ /ﬂ?gwmaxt + 1+ /{/2wmaxt +

w
T, (1™ Vw, V . Tmax
* ( () Ve (w 1+ I{meaxt)+>

2 ’ 1+ KoWmaxt ) , )

Using the fact that Vw =V (w — M) we deduce that

1+Kowmaxt

1d H < Wmax ) H2 ( K;Qw?nax ( Wmax > )
= —max — Nw————
2 dt I+ KoWmaxt / 2 (1+ RmeaXt)z 1+ Kowmaxt /

< —ko (W (w— _ Gmax .
I+ Kowmaxt /

2
li” (w . Wmax > ”3 < — ko <W2 o wmax 5, (w _ Wmax > )
2 dt 1 + KoWmaxt / (1 + Kowmaxt) I+ Kowmaxt /

2
Wmax Wmax
1 + KJQWmaxt 1 + /wimaxt +

< 0.

Thus, by integration and using the inequality wy < wmax, we conclude that w < 22—

almost everywhere in Q7. Now, we will obtain the bound from below by testing the

equation (5.118) by (w _ %)

1+Kowmint |

O, oo min —(wo, V W —omin
1+ Kowmint ) 1+ Kowmint / _
w .
T, (W) Vw,V | w — ————
" ( W) v <w L+ Fézwmint)>

2 ’ 1+/~£2wmint _ ’
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Again, we deduce that the second term is equal to zero and the third one is positive:

1d Wrnin 2 HQwanin Wmin
O (e
2 dt 1 + Kowmint ) (1 + KoWmint) I + Kowmint / _

< —kg (W [w— _ Gmin .
1 + Klgwmint _

1d Wmin 2 2 wgqin Wmin
L (e ) ey (w2 (o e
2 dt 1 4+ KoWmint ) (1 + KoWmint) I + KowWmint / _

< + Wmin Wmin 2
X —R w —,\W
2 1+ KoWmint 1 + Kowmint / _

<0.

By integration and the fact that wy > wpi, we conclude that w > # almost
everywhere in Q7
For now on we will refrain from showing the attainment of initial data. The methodology

will be shown for a more complex case, that is, in the proof of Theorem 5.1.1. O]

5.2.6. Proof of Theorem 5.2.9

We use (v, w™, b™) to denote a solution of the system (5.72)-(5.76), whose existence
was established in Theorem 5.2.10. Our goal is to let m — oo and thus prove Theorem

5.2.9.

m-independent estimates

Repeating the procedure from (5.97)-(5.98) we deduce that

sup [ ()2 + f T (™) | D™ Pdedt < C., (5.119)
te(0,T") 0T

sup |c"(1)] < C,  sup [0 ()] < C(n, k). (5.120)
te(0,7) te(0,7)

We multiply (5.83) by d/*(t) and sum from ¢ = 1 through m to obtain

(@™, b™) — (b™0™, Vb™) + (T, (™) Vb™, V™)

Ty, (™) | Dv™?
— (b b ) |
( W 1+ n-YDym2’
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Using (5.20), (5.85), (5.81), the fact that D < 1 and dive™ = 0 we get

1+n=1|Dvm|?
1
(0™, 0™) + — (V™ , V™) < (kn, |b™]) .
n
Using the Young inequality and Gronwall lemma, we get

1
sup o™ (8)[3 + —f Vo™ |3dt < C(n, k). (5.121)
te(0,T) n Jor

Using the equation (5.83) and (5.121), (5.119), (5.85), we conclude (in the same way as
in (5.108)-(5.109)) that

T
L [0 21 2y dt < Cn, k). (5.122)

Testing the equation (5.84) by w™, we get

ld m m, m m n,m m m m m
5%“(’0 H%—F(w v 7vw )+(Tn(:u’ )VCL) 7vw ):_KQ((W )2,&) )

Using the fact that dive™ = 0 and (5.81), (5.85), we obtain

1d

m 1 m
5@\@ HngEHVW 5 <0,

and thus
T
J W™ 2 dt < C(n, k). (5.123)
0

Using the equation (5.84) and estimates (5.119), (5.123), one can deduce (again, in the
same way as in (5.108)-(5.109)) that

T
L [Gsw™ [y-12(0 dt < C(n, k). (5.124)
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Taking the limit m — o

By the estimate (5.119) we can find a subsequence (which we do not relabel) such

that
" —* ¢ weakly* in Wh*(0,T)".
Using the Arzela-Ascoli theorem and the estimate (5.120), we conclude that
" —c strongly in C'(0,7)". (5.125)
Based on the definition (5.86) and the convergence (5.125), one can deduce
v > v = Zn: Ciw; strongly in C(0, T, W2 (Q)).
i=1

Using (5.123), (5.124) and (5.81) and the Aubin-Lions lemma, we find a subsequence such

that
W —w weakly in L? (O7 T; W1’2(Q)) ,
' — dw weakly in L? (O, T; W’LQ(Q)) ,
wm =% w weakly® in L® (0,T; L7()),
W - w strongly in L* (0,T; L*()) .

Using (5.121), (5.122) and the Aubin-Lions lemma, we extract a subsequence such that

b —*b weakly™* in L? (O,T; W1’2(Q)) N L” (O,T; LQ(Q)) ,
o6t — b weakly in L* (0, T; W~"2(Q2)),
b — b strongly in L? (O, T; LQ(Q)) )

Having the above estimates, it is easy to identify the limit of the system (5.82) - (5.86)

to obtain

(v4, w;) — (Gk (|v| )U R, Vwi) + (T;€ (/ﬂ) D(v), D(wi)) =0 (5.126)
foralli=1,...,n,
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zy— (bv,Vz 1 z W — ( HD(U)‘?
(b1, 2) = (b, V2) + (To (") VD, V2) + (’” L+ n'D(v)]?’ ) ' (5.127)
Vze WH(Q)a.a. te (0,7),
Wiy 2) = (wv, V2) + (L") Ve, Vz) + ks (7, 2) = (5.128)
Vze WH(Qaa. te(0,7),
where
o % . % (5.129)

Now, we will show bounds for b from which we will conclude that " = . By doing

so, we will show the existence of a solution to (5.66) - (5.69).

Minimum principle for b

Firstly, let us test the equation (5.127) with z = b_. We get

~ T (") |D(v)|?
b b_)— (bv, Vb_ T.(u")Vb,Vb_) = (—brw,b_ o).
< R > ( v, )+( (:U“ ) ) ( +W )+ <1+n—1|D(v)|2
Using the fact that dive = 0 to the second term of the left-hand side, the positivity of
the third term on the left-hand side and the non-positivity of the second term on the
right-hand side, we get

Thus we deduce that b > 0 almost everywhere in Q7. From this it follows that z* = " and
that the positive part of b in (5.127) can be dropped. Thus, the existence of a solution
to the system (5.66) - (5.69) is established. Now, let us test the equation (5.67) with
b— m . Again, using the equation dive = 0 and the positivity of the

K2Wmin

third term on the left-hand side and the negativity of the second term on the right-hand

side we get

by, [ b— bumin . < | —bw, [b— min i ,
(1 + Kowmaxt)™ / _ (1 + Kowmaxt)®2 ) _
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The inequality can be rewritten in the following way:

1d 1 )
L (- o)
k(14 Kowmint)* ) _

wmax ]_
< | —bw + e b — - .
k(1 4 Kowmaxt)™ k(1 + Kowmint)™ /) _

wmax 1 1
< — —b + 19 b— 1
1 4+ KoWmaxt k(14 KoWmaxt) "2 k(1 + Kowmint)* / _
< 0.

1
L

we conclude that b > ———

Using integration from 0 to ¢ and the fact that bg’k > +
k(1+Kowmint) *2

almost everywhere in Q7 and thus we prove (5.65).

A remaining inequality

Now, we will establish (5.71). Let us test the equation (5.67) with -5, where ¢ € D(Q)

and ¢ > 0. Thus, we get

(b, %% (bv,V%) + (Tn(u")w,v%>
(i) (i)

Using the non-negativity of the last term of the right-hand side and the equation divwv = 0,

we get
{(Vb) o)+ <va,i) 4 (Tn(m)w, E) _ (Tn(m)vza,%w)
‘ 2vb 2vb 1 4b?
= 3 <\fbw, go) .
Let us observe that the last term of the left-hand side is not positive. Thus, we obtain

((9), )+ (3 (VB) 1) + (T vV, 9) = -
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After integrating from 0 to ¢t we get

(Vere), ) - J(\fv Vo dT+L(Tn(mv\/Bw)
(\/6"790) J(\/wsz?)

5.2.7. Proof of Theorem 5.2.8

Let (v™,b",w™) be a solution to the problem (5.66)-(5.69), whose existence is guar-
anteed by Theorem 5.2.9. Our goal is to pass with n — o in (5.66)-(5.69) to obtain
(5.45)-(5.47), and thus to prove Theorem 5.2.8.

n-independent estimates

Proceeding as before, we get

t
ww%+2anmmmeMM=w33 (5.130)
0
Thus, we deduce the following estimate:

swhﬂﬂ%J~ﬂwWMWme<G (5.131)
QT

te(0,7)

Now, using bounds on w (5.64) and b (5.65) and the Korn inequality, we deduce
T
f ||v"\|f2 dedr < C(k). (5.132)
0
By the equation (5.66) and the inequality (5.132) one can deduce

T
f [ow™ |2, , dadr < C(k). (5.133)
0

2 3
Using the standard interpolation inequality HuH% < Cllullj July, and (5.131), (5.132), we
get

T 10
| wrigar <o, (5.134)
0 3
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Now, we will concentrate on uniform estimates for b”. First, for arbitrary a > 0 we set

z =T,(b") in (5.67) and obtain

O, Ta (")) = (0"0", VIL(0")) + (Tn(u") V", VI (0"))

T (i) [Do"?
= —b"w" T.(0") ) .
( W 1+ n=YDuv|?’ 2(0")
Using the definition (5.21) we get
7 T d 7
(0b", Ta (b )> = dt 1©a(b >H1 (5-135)
From the inequality (5.131) it follows that
[ (B2 1) < .
o \1+n~tDyn2’"° S .

By the fact that dive™ = 0 we get
(O™, VT, (b)) = — (VO"0", T,(b")) = — (v", VO,(b")) = (dive™, 0,(b")) = 0.
We also have
(T (™YWb, VT, (b")) = f T (™) |VT, (0™ dex. (5.137)
Q

Combining (5.135), (5.136) and (5.137) we obtain

d n n n\ |2

2 19a(0)y + | To(u®) VTL(0")]" dz < Ca.

Q

By integration of the above inequality from 0 to T we get

sup [[©4(b"(1))[l; + LT T(p") IVTL(0")[ dadr < CaT +2[0a(0"(0)], - (5.138)

te(0,7)
Using (5.21) one can show that

1
if 0">a then ©,(0b") > §ab”
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and

. 1 2

if " <a then ©,0") = 5(1)") .
Thus, we get

2
1™ ()]l < J —0,(b"(t))dx + A/ 20, (b"(t))dx
br(t)=a @ " (t)<a (5.139)
C(a)]|©a(0"(1)) | + Cla).

Using (5.138), (5.139) and (5.51) the following inequality follows:

s 10), + f T, (") VT2 dadr < C(a). (5.140)
te(0,T QT

Now, we test the equation (5.67) inserting z = ﬁ (which is a viable test function based

n (5.65)), where X € (0,1):

d @) o VO 4 DD L
afgﬁdx”ff”(”(bf“d (b ”””D(“)'Q’(b"y)'

Thus, integrating from 0 to ¢ and taking supremum over t € (0,7"), we obtain the following

inequality:

/\J T (") [vir” dmdt<JT brw" 1 dt + ! su J(bn)l’\dx
ar " S ) o) 1= X oy Jo '

Using (5.140) and (5.64), we can bound the right-hand side uniformly and finally obtain

J Z;nngwbﬂ dedt < COD) ¥ e (0,1). (5.141)

Now, we set z = - in (5.67), and using the fact that divev™ = 0 we obtain

bn

d T (1) Ty (u") |Dv"* 1
— | Ind"(t)dx — b"|“dx bW, — | .
AR R G e
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After integrating from 0 to ¢ we deduce

t n nl|2
Ty () [Dv"? 1
— 1 b” d dxdt — | dt
f “J ’ *f <1+n—1|Dvn|2’bn

<‘f(w,1)+nmbgwy
0

With the proper usage of supremum we obtain

T 2
Ti (i) Do 1
sup — Inb™(t dx—i—f dx dt+f (—,— dt
t€(0,T) Ln<1 ’ o \1+n7tDuv> "

<2f (W™, 1) dt + 2] Inby™|,.
0

By the fact that

[Ind"(t)|1 = —f Inb"(t)dx + f Inb"(t)dx,
Qn{br(t)<1} Qn{bn(1)>1}

it follows

T 2
T () [Do2 1
Ind™(t)|1 + —— — | dt
tesgl% Il f L <1+n1]Dvn|2 hn

sgz‘[ (@™ 1) dt + sup [B"(0)]y + 2 In b
0 te(0,7T))

Thus, by (5.64), (5.140) (taken with a = 1), (5.2), (5.51), (5.52) we get

2dz dt+J <1T’1<’:>1|’ggz;"2,bin> dt < C. (5.142)

sup | Ind"(t) 1+J

te(0,T)

Combining (5.142) with (5.141), (5.52), (5.51) yields

; ) i) D)
s [0 + j |2 n)1+A|Vb|ddt+ f Jo 5 LDy e (5143

<O\ Vo xe(0,1].

We see that, based on (5.131), (5.20), for all k € N

Dn2
kf L
Q

Tﬁ{,u,"?k} 1 + n*l‘D/Un‘2
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Additionally, by (5.143) with some specific X i.e. A = 3, (5.20), (5.64), (5.57), we have
that for all ke N

D n|2
f _ Dt a<c
Q

Tm{“ngk} 1 + nilyDvnIZ

Hence

n|2
J f D < (5.144)

1+ n=tDvn|?

where C' does not depend on k and n. Next, we will focus on estimates of T,,(u™) that

are uniform with respect to n and k. Using the definition (5.20), we get

mn Va3 1
T, (b—> <T, (") < T, (b—) i1
wn wn n

and thus

min {1, i} T, (b") < T, (4") < max {1, i} T, (") +
w™ wn

n .

Due to (5.64), we finally get
ChT (") < Ty (1) < CoTl (") + % (5.145)
Thus, by (5.143)
g n 2 |VT (bn)|2
v (T 20t =C(\) | ol gt
J, 19 [ e = ooy | TS
_ VTN b") M2 g
— o) JQTm{an} St = J o m VT, (57 dadt (5.146)
T,(1") "2 g ]
<C(N) LTm{bw} T VT, (6") 2 dedt < C(A1).
Combining (5.140) (i.e. with a = 1) with (5.146) gives
sup || (T, (b)) 2|, +J Hv (b)) ] 2dt<o<x1). (5.147)
te(0,7) 2
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oo

s 2
Applying the interpolation inequality |f|2 < C|f[; |If]7, and inequality (5.147) we get
3 bl

§
f (T () < e
Qr 3
and hence
84\
J I ()5 < OO for all A (0,1) (5.148)
or ‘
Moreover, let us observe that (5.148) implies
J (T (™))% < C(q) for all g [1, 3§> and « € (0, 1]. (5.149)
or a

Now, we continue with k-dependent estimates that will be useful to obtain n — oo limit.
From (5.143), the maximum principle for w™ (5.64) and minimum principle for o™ (5.65)
we get

Ve

WOT gedt < OO k),
JQT (b”)H/\ ( )

which combined with (5.140) yields

[ =,

17

drdt < COV, k).
2
Using the embedding W12 < L5 implies
T
f H(bn)HH dedt < C(\1, k). (5.150)
0 3
Finally, applying the interpolation inequality

ey =2 < ey

o),

wlot wlot

and (5.140), (5.150), we conclude that

T 5—A
J 1] 52, dadt < C(A k). (5.151)
0 3
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Now, we proceed with k dependent estimates on the diffusion term. For any q € (1, 2),

due to (5.151) and (5.143) we get

J,

To(pm)Vo" '

/2 2—q
T (™ bn2 4 a 3
< f dedt f (o)== dadt
or () or

52—q
3 q

where A\ < — 1, which implies that (1+’\) < % Therefore, we have the following

estimate:

f T drdt < C(Z71 k). (5.152)

Thus, combining the above inequality with (5.57), (5.64), (5.65) and (5.151), we obtain

f anul i dzdt < C(A7 k). (5.153)
Notice that from ;25 > 8 =14+ 3 ‘the Holder inequality, (5.152) and (5.148) it follows
that
J T, (1) * dedt < O k). (5.154)
QT

Additionally, we can observe that due to (5.154), (5.145), (5.44),
J (T (u™)° VB 5" dzdt < CO, k) for all a e [0, 1], (5.155)
QT

In order to obtain a uniform bound on ¢;b", it remains to estimate the convective term

b"v™. Let us observe that

16" 0" [10-a < 0" 10 67| 0 20-x (5.156)
9 3 3 204A
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where ?Oégﬁ € (10/7,5/3), and so 30% < 5_— for some A\* € (0,1). Thus, we can

conclude that based on (5.151), (5.134) and (5.156) we have

[o" 0" 100 < C(F, A7h). (5.157)

Using the equation (5.67) tested with z € Wi (2), combined with inequalities (5.157),
(5.154), (5.64), (5.151), (5.131) and the embedding WL (Q) ¢ W(Q) < CO%(Q),

we conclude

f Hotb H 1, 80 >\ < (l{l ' ) (5158)
Finally, we derive k-independent estimates for w™. We set testing function z = w" in
(5.68) and obtain
1 d ?’L n n n n
Sl B+ | T 9P = = (@) 7).
Thus, integrating from 0 to T we get
f T, (1) | VW) dadt < C, (5.159)
QT
which, after using (5.64) and (5.65), implies that
T
J |w"|F, dadt < C(K). (5.160)
0
We see that due to the Holder inequality,
|7 (1) Vw1622 <
11
(5.161)
] )Hm .
We see that =2 e (15/7,8/3), and so =2 < % for some A\* € (0,1). From this and
(5.159), (5.148) we obtain
I T (1) Vo™ 161 < C(A™h. (5.162)
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Thus, having (5.162), (5.134), (5.64) and (5.68), we can conclude that
T 162
f |Os™ | T 16-n dxdt < C(A™h. (5.163)
0 711
Passing to the limit with n

Having (5.131), (5.132), (5.133), (5.134), (5.153), (5.158), (5.160), (5.163), we can find

a subsequence (which we do not relabel) such that

v —*o  weakly* in L” (0,7, L3,) n L? (0, T, W32(Q)) (5.164)

o — dv weakly in L? (O, T, W(ijZ(Q)) , (5.165)
b" —*b  weakly* in L7 (0,7, W"9()) n L*(0,T, L*(Q)) for all g € [1,5/4),

(5.166)

O™ — ob weakly in M (0, T, W19(Q)) for all ¢ € [1,80/79), (5.167)

w" =*w  weakly* in L* (0,7, W"*(Q)) n L*(0,T, L*()), (5.168)

O™ — dw  weakly in L (0,7, W~ 9(Q)) for all ¢ € [1,16/11). (5.169)

Now, using the Aubin-Lions Lemma 5.2.6, we conclude that for « € (0, 1) we have

vt > v strongly in L* (0, T, W**(Q) n L3,,(Q)) , (5.170)
W' — w strongly in L? (0, T, W*?(Q2)), (5.171)
) strongly in LY (0,7, W*4(Q2)) for all ¢ € [1, g) . (5.172)

We can extract subsequences that converge almost everywhere

vt —> v almost everywhere in Q7 (5.173)
w" — w almost everywhere in Q7 (5.174)
) almost everywhere in Q7. (5.175)

Moreover, from (5.151), (5.173), (5.134), (5.175) and the Vitali Lemma 5.2.3, we get

V" > strongly in L (0,7, LY(2)) for all ¢ € [1,10/3), (5.176)

b" — b strongly in L9 (0,7, LY(Q2)) for all ¢ € [1,5/3). (5.177)
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Now, we will identify the limit of (5.68) as n — 0. Notice that (5.162) implies
T,(u")Vw" — uVw in LY(QT) for all ¢ € [1,16/11). (5.178)
Thus, using (5.170), (5.171), (5.169), we get
(W, z) = (wv, V2) + (WVw, Vz) = —ks (w?, 2) Vze WhP(Q) a.a. te (0,7T).

We need to show that uVw = pVw almost everywhere in Q. To do so we use

Lemma 5.2.3 and (5.148), (5.174), (5.175) to obtain
To(1") — pin L0, T, LY()) for all g € [1,8/3). (5.179)
Then, from (5.179), (5.168) and Lemma 5.2.4 we conclude
T, (") V" — pVw in LY(0,T, LY(Q)) for all g € [1, g) : (5.180)

Using (5.180), (5.178) and the uniqueness of a weak limit, we get uVw = pVw. Now,
we will focus on obtaining a weak limit in (5.67). From (5.149), (5.174), (5.175) and the
Vitali Lemma 5.2.3, for all a € (0,1) we have

8
(T (™))" — p® strongly in L9(0,T, L9(Q)) for all g € [1, 3—) : (5.181)
a
From (5.155) and the fact that £ < 23 we get
(T (™))" V" — p2Vb weakly in L% <O, T; L%(Q)> for all « € [0, 1]. (5.182)
Our goal is to identify this limit for all a € [0,1]. We will proceed inductively. Define
h = 8%, ap = 0 and o, 41 = a; +h. Notice that (5.182) holds for ag due to (5.166). Assume

that it holds for «;, that is

(T (™))™ V" — 1% Vb weakly in L3 <O,T; L%(Q)) . (5.183)
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Using (5.183), (5.181) with @ = h and ¢ = £} and Lemma 5.2.4 we get

(T (™)™ V" = (T (™))" (Ta(™)™ V"

| (5.184)
— iV = b weakly in L (0,75 L (Q)).
From (5.182), (5.184) and the uniqueness of the weak limit it follows
(T (™))™ Vb — p®+1Vb weakly in Lo (0, T, L%(Q)> :
Thus, setting ¢ = 81 we obtain
T (") V" — Vb weakly in L3 <O,T; L%(Q)) . (5.185)

From (5.154), we deduce that T, (u™)Vb" — uVb weakly in L7(0,T,L%(2)) for all
q € [1,80/79). Finally, the uniqueness of the weak limit and (5.185) imply

T, (n")Vb — uVb weakly in L9(0,T, LY(Q2)) for all g € [1,80/79). (5.186)

From (5.174), (5.175), (5.20) and Lemma 5.2.3, we can conclude that for all « € (0,1)

(T3 (™)™ — (Ti(p))® strongly in LI(0,T, L4(Q)) for all ¢ € [1, ). (5.187)

From (5.131), (5.164), (5.187) with o = 1, Lemma 5.2.4 and the uniqueness of the weak

limit, we have

T () Dv™ — /Ty () Dv weakly in L* (0,T; L*(9)) . (5.188)

Now, using (5.188), (5.187) with a = 3, (5.165), (5.134), (5.170), we can pass to the limit
in (5.66) to get

(v, w) — (G (MQ) v @, Vw) + (Tj; (1) D(v), D(w)) = 0

(5.189)
Yw e W 2(Q) a.a. te (0,T).

147



CHAPTER 5. EXISTENCE OF A WEAK SOLUTION

The solution is defined on time interval [0,7"), however by repeating all previous steps
it can also be attained on time interval [0,7 + ). We will consider such an extended

solution to obtain stronger convergence results

(v, w) — (G (]0]2) v @, Vw) + (Tj; (1) D(v), D(w)) = 0

(5.190)
Yw e W,i2(Q) a.a. te (0,T +e).
First, notice that based on (5.170) and Lemma 5.2.7 we have
v"™(t) — v(t) in L*(Q) for almost all t € (0,7 + ¢). (5.191)

Let us pick a time t* € (T,T + ¢) such that convergence (5.191) holds. Now, let us set

w = v (which is a viable test function) in (5.190) and integrate from 0 to ¢*
lo@)I3 + 2 Lt* ()| D(v)[*dzdt = o3

By setting ¢ = ¢t* in (5.130) (having in mind that it is valid for the extended solution) and

passing with n — oo, we get

n—0o0

imsup (10" +2 [ TG Do o) =
Q¥
By (5.191) we get

[o(£%) 2 + 2 lim sup f To(u™) | D" Pdadt — [vo2. (5.192)
Q¥

n—00

By subtraction it follows

limsupf Tk(u”)|Dv”\dxdt:f T ()| D(v)|*dadt. (5.193)
Ot Ot

n—0o0

Thus, using (5.193) and (5.188) (again, having in mind that it can be attained up to time

T + ¢), we conclude that

ATy (u) Dv™ — /T (1) Dv strongly in L? (O,t*; LQ(Q))
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and thus, due to the fact that t* e (T, T + ¢),
T ()| D" ? = Ti(w)| Do strongly in L' (0,T: L} () (5.194)
Having this, we can extract a subsequence that converges almost everywhere

T (™) | Dv™|* — Ti(p)| Dv|? almost everywhere in Q7. (5.195)

From (5.144) we have

IDU”I2
dadt < C.
] e e

Using (5.195), (5.174), (5.175) and the Fatou lemma yields

Ty (p) | Dvl?
J dedt = f |Dvdxdt < C.
QT Tk(:u) or

Now, we can strengthen (5.167). We see that, based on (5.67) and (5.194), (5.176),
(5.177), (5.168), (5.186), we have

T

T T T
f (0", 2)dt :f (b™", Vz) dt — f (T, (™) V", V2) dt—J (b"w", 2) dt
0 0

0 0

T n n|2
Ty, (") | Dv"|
| (WU g
L <1+n_1|Dv”|2 :
T T

(qu,Vz)dt—f (bw, z) dt
0

T
— | (bv,Vz)dt — J
0

0

+ J (Tk (1) | Dvl?, z) dt

0

for all z € L* (0, T, W4(2)), where g € (80, c0]. This means that

0;b"™ — 0;b weakly in L' (0,7, W~9(Q)) for all ¢ € [1,80/79).

Using Lemma 5.2.3 and (5.65), (5.64), (5.174), (5.175) we deduce that

1 1
T ESY
T () ()2 fb (5.196)
strongly in LP(QT) forall 1 <p<ooandforall 1l <\ < .
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Combining (5.196), (5.186) implies

Tn n
¢Vb” Lk Vb weakly in L(Q7) for all g € [1 @) :

1+ 1+ )
+ + 79

(br) = (b) =

Next, using (5.143) we improve convergence result to

Tn n
VI G L VI Gy eakly in 12(07).

1+ 14

CORS (b) =

Employing the same reasoning one can show that
T’n n
TG . 9 weakly in LI(QT) for all g € [1, @) .
(bn)2 b2 79
Finally, thanks to (5.151), (5.175) and Lemma 5.2.3 we get

Vb — /b strongly in L7 (0,7, LI(Q)) for all ¢ € [1,10/3).

Thus, based on Lemma 5.2.7, we see, that there exists a subsequence (which we do not

relabel) such that

V07 (t) — A/b(t) strongly in L9(Q) for all ¢ € [1,10/3) and almost all times t € (0,7).

This gives us

(«/b”(t), z) — (x/b(t), z) for all p € D(Q) for almost all times t € (0,7).

The obtained convergence results are sufficient to pass to the limit with n — oo in equa-
tions (5.66)-(5.68) and the inequalities (5.71), (5.143), (5.130), (5.159) to get Theorem
5.2.8.

5.2.8. Proof of Theorem 5.1.1

For an arbitrary k, we denote by (v¥,w* b¥) a solution to the problem (5.45)-(5.47),

whose existence was established in Theorem 5.2.8.
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k-independent estimates

First, from (5.45) tested with v* and (5.49), we get

sup 0" (t)[3 + J (1 + Tu(p®)) |D (") Pdwdt < C. (5.197)
te(0,7") Qr

10 1
Thus, using the Korn inequality and interpolation inequality | f| 2 < [ £]3 [ fI3,, we get
3 K
T 0
J [0, + [o*| & dt < C. (5.198)
0 ’ 3
Moreover, from (5.49) we have
’ N 1
f [Tl dt < €O, (5.199)
0

Using (5.199), (5.197) and the Holder inequality, we obtain

16—5\
QT 2

HTk(#k)DUkHQT,% < Hv Tk(#k)kaHQT ) Hv Ty, (p1%)
’ 553 (5.200)

[T (1) [ 1050 < CATY),

QT 2 6+5X

<[V

due to =22 € (1,8/3). Notice that from (5.49) and (5.43), it follows that

J S < oY), (5.201)
QT

Using (5.49), (5.201), (5.43) and the Hoélder inequality yields

(bk)1+)\

Iz
? 2 (5.202)

:uk
(bk)lJr)\ ka

Vbl <

k A
CH E_wok| otz <.

2

Notice that for any A € (0,1) we can find A, A; € (0,1) such that &5 = vl

Additionally, A\;, \a — 07 as A — 0. Thus, by the Holder inequality and (5.43), (5.202),
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(5.201), we get
T8 g s < [T g, g s < € (WT0Y) <COCY. (5209)
From (5.49), (5.202), (5.201) and (5.203) we have

T _ 8-5)
sup (D01 + b)) + [ (17043 + ) ae
te(0,T) 0 3

. (5.204)
8—)\
+ J || 7y dt < O,
0 7

Based on equation (5.46) we have

O]y s = sup (@b, )]

A /

%OEWL(#) Q)] 1 (8_>\)/ =1
w T (@

< sup [‘(bkvk, V(p)! + |(,ukbk,Vg0)‘ + ‘(w"’bk, go)‘ + ’(Tk(,uk)|ka|2, gp)‘ )
wewl*%(m
H@llly%=1

Let us note that Wl%(Q) c W8(Q) « C%8(Q), and thus, by the Holder and Young

inequalities we have

eeW IR ()

lell, s—x=1
T=A

ot s s s [uv'fug A P N

+ |t 10° ]y el + [T i) | DO |90||oo]

< (JoH] s + 045 + [ woh] 2 + ], + [T Do), + 1)

Finally, by (5.204), (5.201), (5.198), (5.197) we get
Lok
-1
L 0] ss02 g < COTY). (5.205)
Next, notice, that (5.49) and (5.43) imply

sup Hwk(t)Hoo + f V| VwF Pdadt < C. (5.206)
te(0,T) Qr
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By the Holder inequality and (5.206), (5.201) we obtain

Ay S N s B

Zork (5.207)
< [vIEvet| ol s < o).

Using (5.204), (5.43) and (5.207) we get

[V ) 160 < AT (5.208)
and

HV (bikjkl) . <C(AY. (5.209)

By (5.208), (5.201), (5.43) we can write
J b kH e SA(Q) dt < CO(A™h). (5.210)

Using the equation (5.47) and inequalities (5.43), (5.198), (5.207), we deduce (in a similar
way as in (5.205)) the following:

T 16—5A
f o] e OO (5.211)
0 11

Reconstruction of the pressure

We will show that there exists pressure py € L*(0,7T, L*(Q2)) such that

<v,kt,w> — (Gk (‘vk’2> vk ®vk,Vw> + (Tk (uk) D(v"), D(w)) = (pk,divw)

(5.212)
Yw e WH2(Q) and almost all t € (0, 7).
Combining Lemma 5.2.1 with (5.38) and (5.20), (5.22) gives
Pt = L(Ti (") Dv®) e L*(Q) for almost all ¢ € (0,7, (5.213)
ph = L(—Gr(["[*)v" @ v*) e L2 () for almost all ¢ € (0,7), (5.214)
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which are uniquely defined for a fixed k. Additionally, using the estimates (5.198), (5.200),

we have

P 16-51 1651 <C HTk(uk)kaH% for almost all ¢t € (0,7, (5.215)

|p5 Hg <C HkaZ%O for almost all ¢ € (0,7, (5.216)

Moreover, the following equalities hold:

(p}, A¢) = (Th(1")D(v"), V(V¢)) for all ¢ € W*2(Q), (5.217)

(h, Ag) = — <Gk <|vk\2) @k, v%) for all ¢ € W22(Q), (5.218)

J pyde = J psda = 0. (5.219)
Q Q

Let w € W2(Q). It can be decomposed (by the Helmholtz decomposition) in the following

way:
w=Ve+V xA,
where ¢, A € W22(Q). Since div (V x A) = 0, from (5.45) it follows

W,V x Ay — (Gk (‘ka) V" @,V (V x A)> + (T, (1*) D(v*), D(V x A))

(5.220)
= 0.
We also see that due to dive* = 0, we have
Wk, Vi) = 0. (5.221)
Since div (V x A) = 0, we can write
(p}, div (V x A)) =0, (ph, div (V x A)) = 0. (5.222)

Thus, summing (5.222), (5.221), (5.220), (5.218), (5.217), and using the fact that

(Ti(u") D), V(V9)) = (T(u") D), D(V)) ,
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we get

Wk, Vo +V x Ay — (Gk (wf) @,V (Vo + V x A))

+ (T (,uk) D(*),D (V¢ + V x A))) = (pk,div (Vo +V x A)),

where p* = p¥ + p&. The obtained equality is exactly (5.212).
Next, using (5.215), (5.216) and estimates (5.198), (5.200), we deduce

INCi=e

Now, based on the equation (5.212) for A € (0,1) and proceeding as in (5.205) we have

) dt < C(\). (5.223)

|ovz]

ostszs o < C ([0 + TGP Dot s on + il sooss + Ipally) - (5:224)

(@)

Consequently by estimates (5.197), (5.198), (5.223) we have

k 16 5>\ 1
J |ow H ERULY t<C(A). (5.225)

Taking the limit £ — o

By (5.197), (5.198), (5.225), (5.204), (5.205), (5.206), (5.211), (5.201), (5.223), we

deduce the existence of a subsequence (which we do not relabel) such that

vb —~* v weakly* in L* (0,7, L3, () n L* (0,7, W2()) (5.226)
oF v weakly in L¥ <O,T, ﬁ(Q)) , (5.227)
o — dw  weakly in L9 (0,7, W 9(2)) for all ¢ € [1, %) , (5.228)
V¥ —*b  weakly* in L7 (0,7, W"9(Q)) n L* (0, T, L'(2)) for all g € [1,2), (5.229)
ob" — &b weakly in M (0,T,W~"9(Q)) for all ¢ € [1,8/7), (5.230)
wF —*w  weakly* in L* (0,T, L*(2)), (5.231)
Ow” — G weakly in L7 (0,7, W~ 9(Q)) for all g € [1,16/11), (5.232)
V" —b  weakly in L7 (0,7, L%()) for all q € [1,8/3), (5.233)
p¥ —p  weakly in L7 (0, T, L%(2)) for all g € [1,16/11), (5.234)
Pk —~py  weakly in Lf (o, T, L%(Q)) . (5.235)
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From the Aubin-Lions lemma, we conclude that for o € (0, 1)

V" — v strongly in L* (0,7, W*?*(Q) n L3, (Q)) , (5.236)

" — b strongly in L* (0,7, W*?(Q2)) . (5.237)

We can extract subsequences that converge almost everywhere

(T almost everywhere in Q7 (5.238)

v —b almost everywhere in Q. (5.239)
Thus, based on inequalities (5.204), (5.198) and the Vitali Lemma 5.2.3, we have

o - strongly in L7 (0, T, L4(§2)) for all q € [1,10/3), (5.240)

v —b strongly in L7 (0,7, LY(Q)) for all ¢ € [1,8/3). (5.241)

Using (5.210), (5.209), (5.241), (5.231), Lemma 5.2.4 and the uniqueness of the weak

limit, we get

bEwF — bw weakly in L7 (0,7, W"9(Q)) for all ¢ € [1,16/11), (5.242)
brw* bw N 1q
T 150 weakly in L7 (0,7, W"(2)) for all ¢ € [1,16/11). (5.243)

Our goal is to strengthen the convergence result for w*. To achieve this, we employ the

Div-Curl lemma (see Lemma 5.2.2). Let us define two 4-vectors
a* = (WF W — pFVWF) &= (bk (1+ bk)fl Wk, 0,0,0) .
Using (5.43), (5.198) and (5.207) yields

HakH 16—5) ) + HC < C()\_l)

k
L1 (QT HLOO(QT)

From the equation (5.47), the maximum principle (5.43) and (5.209), we have

A

000 e g, = 100 + v (40%) = v (V) ooy = e | )], < €
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and

<C.

Viad = (Viuc)”
LY(QT)

bE Wk
<C —_—
L1(QT) HV <1 + bk>

Using (5.231), (5.240), (5.207), (5.43) in the case of the convergence of a* and (5.243),

(5.43) combined with the uniqueness of the weak limit in the case of the convergence of

k

c’, we get
a’ —a = (w,wv — uVou) weakly in L?(Q7) for all ¢ € [1,16/11),
F—*e=(b(1+ b) "' w,0,0, 0) weakly* in L*(Q7) .

Thus, using the Div-Curl Lemma 5.2.2 implies

bk k|2 b 2
ol — vl in the sense of distributions. (5.244)
1+ bk 1+0

bk|wk|2
1+4bk

However, we see that the sequence is bounded in L*(Q7), so a weak sequence can

be extracted. Using the uniqueness of the weak limit we get

Dl L blwl®

kly* in L*(Q"). 5.245
1+ bk 1+bweay in L7(27) ( )
By (5.245) and (5.241) we deduce that
bk k|2
f (V) do = f o0+ 1) t"bL dz
or @ bl (5.246)
w 2
— b(b+1 dr = bw)” dx.
JQT <+)1+bx JQT<W) ¢
From (5.241) and (5.231) it follows
VWb — bw weakly in L*(Q7). (5.247)
And using (5.246) and (5.247) we get
b*wh — bw strongly in L*(Q7). (5.248)
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Consequently, for a subsequence we have

b*w* — bw almost everywhere in Q7. (5.249)

By the Vitali Lemma 5.2.3, (5.249), (5.239) and (5.43) we get

k ok
Wk = bb_c: — l%w = w strongly in LY(Q7) for all ¢ € [1, ). (5.250)

Having the above convergence and (5.43), it is easy to see that

1 1
—- — — strongly in LY(QT) for all g € [1, ). (5.251)
w w

Using (5.251) and (5.241), we conclude that
k _ é : q T
p* — p = — strongly in L4(Q") for all g € [1,8/3). (5.252)
w

Also, there exists a subsequence (which we do not relabel) such that

p* — 11 almost everywhere in Q7. (5.253)

From (5.252) combined with (5.229) we deduce
pEVYE — Vb weakly in LY(QT) for all g € [1,8/7). (5.254)

Thanks to (5.197), we can deduce that /Ty (u*)D(v*) — /uD(v) in L*(Q7), and thus,
by (5.226), (5.252) and the uniqueness of the weak limit we have

VTe(pF)D(WF) — \/uD(v)  weakly in L*(Q7). (5.255)

Again, using (5.253), (5.204), (5.43) and Lemma 5.2.3 we conclude that

VT (%) — /i strongly in L4(Q7T) for all g € [1,16/3). (5.256)
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Now, from (5.256), (5.255) and the weak-strong convergence Lemma 5.2.4 we deduce

Ty, (1*) Dv* — pDv weakly in LY(Q") for all ¢ € [1,16/11). (5.257)
Using (5.251), (5.242) and (5.229), we get

Vv (bkwk) . ka N \ (b(,d)

ko, b _
VW = wk w

— Vb weakly in LI(Q7) for all ¢ € [1,16/11).
The convergence results obtained above are sufficient to pass to the limit in (5.45)-(5.47)
to obtain (5.15), (5.17), (5.19). Now, we will concentrate on obtaining (5.16). Let us
denote by E* := [v*|?/2 + bk, Let us set w = vz, z € WH*(Q) in (5.212) and sum it with
(5.46) to get

<Etk, z> — ((Ek + pk) o”, Vz) + (ukak, Vz) + (TK (uk) D (Uk) v”, Vz)
= (b0, ) + 5 (265 (0F2) IH? — HP? = T (H2)) o, V2)

(5.258)

First, let us observe that by (5.198), (5.22), (5.23), the sequence
(2Gx (J0*[?) [v¥]? — |v¥[*> — Ty (|v*]?)) v* is bounded in L5 (Q7), and thus there exists a

weakly convergent subsequence (which we do not relabel):
(2Gy (Jo*?) [v** = [v*]> = Ty (|v*]?)) v* — 0 weakly in L%(QT) : (5.259)
Using (5.238), (5.22), (5.23), we obtain
(2Gy, (Jo*?) [0F* = |[v*]> = Ty ([v*]?)) ©* — 0 almost everywhere in Q7 . (5.260)
Thus, by (5.260), (5.259) and the Egorov theorem we conclude that
(2G ([0"]?) [0F]2 = [v"]? = Ty (Jo*]?)) 0% — 0 weakly in L7 (QT) . (5.261)
From (5.238) and (5.239) we have

E¥ - F  almost everywhere in Q7. (5.262)
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Next, (5.198), (5.204) and (5.262) combined with the Egorov theorem yield

E¥ ~E=FE  weakly in L3(Q7). (5.263)

Now, we see that due to (5.198) and (5.263), v*E* is bounded in L's (), and thus has
a weakly convergent subsequence. Thus, the Egorov lemma, (5.262) and (5.238) imply
that

v"EF —~vFE weakly in L%(QT) : (5.264)

Finally, using (5.257), (5.240), (5.234), (5.235) and the weak-strong convergence Lemma

5.2.4, we get
k ky, k - T [, 80
T (") D(v")v" — puD(v)v weakly in L4(Q") for all g € |1, -/ (5.265)
k, k . T i 80
pivT — prov weakly in L4(Q") for all ¢ € |1, =) (5.266)
k, k . T i 10
Pyt — pav weakly in L4(Q") for all ¢ € |1, ok (5.267)

From the equation (5.258) and (5.261), (5.264)-(5.267), (5.254), (5.248), recalling that the

weakly convergent sequence is bounded, we deduce that
T q
k
L 6 EM [, g dt < C for all g € [1,80/79).

Thus, one can pass to the limit in (5.258) to get (5.16).

Attainment of initial data

In this part, we focus on obtaining initial conditions in a similar fashion as presented
in [7]. We start with v. Let us test equation (5.45) with ¢ € D(2) such that divy = 0

and integrate from 0 to ¢

t t

(Uk ® v, Do) dt + J (Tk(uk)ka, Do) dx = 0. (5.268)
0

(o5 (0). ) — (v, ) —f

0
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Using (5.240) and Lemma 5.2.7 we obtain

v™(t) — v(t) in L*(Q) for almost all ¢ € (0, 7). (5.269)

By (5.257), (5.240) and (5.269), we can pass to the limit in (5.268)

t t

(v®wv, Dp)dt + f (uDv, D) dt = 0 for almost all t € (0,7).
0

(v(t), 0) — (v0, ) f

0

From this we deduce

lim (v(t), ) = (vo, ) - (5.270)

t—0+

The equality also holds for p € L3, (). Indeed, let {¢;} be a sequence of smooth functions
such that ¢; — ¢ in L*(Q). First, let us observe that by (5.226) we have

lim lim [ (v(t),; — )| < sup Hv(t)nglggo lp; —¢l, = 0. (5.271)

J—®0 -0+ te(0,T)

Now, using (5.270) we have

lim lim (v(t),¢;) = lim lim (v(t), ) + lim lim (v(t),¢; — @) = (vo, @) .

Jj—0 t—0+ Jj—0t—0+ J—0t—0t

From this and (5.271) we deduce that (5.270) also holds for ¢ in L3, ().
Now, testing equation (5.45) with v* and integrating from 0 to ¢, we get

t
@12 + 2 f (Tu (1) D%, Do) dt = ool
0

Next, omitting the second term of the left-hand side and passing to the limit with & — o0

with the use of (5.269), we obtain

[o(®)]2 < [[vo? for a.a. t e (0,T). (5.272)
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Using (5.270) and (5.272) we conclude that

lim [o(t) —vol3 = lim ([o(t)3 + Jvolz — 2 (v(t), vo))
t—0t

t—07t

< [lvollz + lJvoll3 — 2 (vo, vo) = 0.

Similarly, we can show the attainment of initial data for w.

(5.273)

Now, we will concentrate on showing the attainment of initial data by b. Before we

proceed further, we will establish more convergence results. By (5.253), (5.204), (5.43)

and Lemma 5.2.3, we have

b
VpE— = " strongly in L4(Q7) for all ¢ € [1,16/3).

From (5.274) combined with (5.229), we deduce

V IFVOF — | /uVb weakly in L1(Q") for all ¢ € [1,16/11).

From (5.229), (5.239), Lemma 5.2.3 it follows that

Vbk — /b strongly in L7 (0, T, LI(R)) for all ¢ € [1,4),

By (5.276) and Lemma 5.2.7 we get

A/ bE(t) — A/b(t) in L*(Q) for almost all t € (0,T).

Now, using (5.50) for almost all times ¢ € (0,7") we have

( b’f(t),<p>—£ (Wv’f,w) d¢+£( ! \/Evz)’f,w) dr

24/ wk

2

1f
> — brwP, o dT+( bk,go) Vo e D(Q), ¢ = 0.
(V)i (Yoh )

(5.274)

(5.275)

(5.276)

(5.277)

Using (5.276), (5.275), (5.240), (5.229), (5.252), (5.277) and letting k — <o, we obtain

(\/@, go) - Lt (\/Ev, w) dr + f: <\/75\/7Nb, w) dr

1
2
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> ‘f (Viw,0) dr + (Voo ) Vi€ D(Q), > 0 for almost all ¢ € (0,7).
0
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Finally, letting t — 0" gives

lim inf (\/@ gp) > ( b0,¢> Vo e D(Q), o > 0. (5.278)

t—0+

Note that the obtained inequality is also valid for ¢ € L*(f2), as before in (5.270), due to
the density argument. Now, setting z = Ijo<-<s in (5.258) and integrating from 0 to ¢,

we get

¢ ¢
J (O,EF Ddr = J (bkwk, 1) dr.
0

0

Thus,

L Vo (x, t)dr + L 0¥ (z,t)|?de = — Jt (V" 1) dr + L bi (x)dx + JQ |vo ()] da.

0

Using (5.277), (5.269), (5.248) and letting letting k£ — oo, we obtain

L b, ) + L lo(, )2z — — f (b, 1) dr + L bo(2)dz + L o () [2dz

0

for almost all ¢ € (0, 7). Finally, letting ¢ — 0F, we get

h?_l}g:—lp (L b(z,t)dx + L v (z, t)]zdx) = L bo(z)dz + L |vo ()] dx.

Thus, employing (5.273), we get

lim sup L b(x,t)dx = f bo(z)dz. (5.279)

t—0+t Q

Notice that by (5.279) and (5.278) we have

timsup |+/b(t) — v/bol = lim sup (16(0)s + 1l 2 (Vo(1), v/bo) )
< Iboll + ol + 2timsup (= (v/b(8),v/bo) )
t—0t
< 2ol — 2liminf (v/b(2), v/

< 2Jboll — 2 (v/bo, /i) <0.
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Now, by (5.229) it is straightforward to show the attainment of initial data

Jim [5(0) = ol < Jim [v/B0) = V], [V500) + /b,
<2 sup b(r)11" fim [v/600) — v/,

7€(0,T

= 0.

This concludes the proof of the theorem.



Summary

In the thesis, the local-in-time existence of regular solutions has been examined. First,
the existence was shown in the case of periodic domains and data from H?. Moreover,
the condition that ensures that obtained local solutions are in fact global was formulated.
The basic idea behind the condition is to consider functions with small enough oscilla-
tions (measured with the L? norm of Laplacian). Next, it was shown that the previous
assumption on the regularity of initial data can be relaxed - the local-in-time solution
exists provided initial data belongs to H®, where s > g. The presented approach to the
problem of finding possibly the largest space for which the local-in-time existence holds
can be extended to the Besov or Tribel-Lizorkin spaces. The applied methodology would
be similar. These results could be also used as the starting point for the considerations
of the case of a bounded domain. Next, the analysis of more complicated i.e. nonlinear
boundary conditions used in engineering practice could be attempted. Another interesting

direction of subsequent research would be the consideration of turbulent flow’s interaction

with deformable structures (FSI).
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Appendix A

Kato-Ponce commutator estimate in T¢

The main aim of this chapter is to adapt the proof of the classical estimate of J*
commutator from R? to T¢. We closely follow the proof given in [26] modifying parts
which are different due to the choice of the domain and operators’ definitions. We will
also use results from functional analysis concerning spaces defined on the torus and from

pseudo-differential operator theory.

A.1. Definitions and theorems of pseudo-differential operator

theory

To prove Lemma 1.3.3 we will utilise some results from pseudo-differential operator

theory. In the following definitions, we introduce the needed apparatus.

Definition A.1.1 (see [9]). Let m : T¢ x Z% — C be a measurable function usually
referred to as a symbol. Then, the periodic multi-linear pseudo-differential operator as-

sociated with a symbol m is the multilinear operator defined by

To(f) (@) = Y ¥ @8t 4 om (2 &) fi(&) fo(&) - f(&),

EGZ‘”

where x € T, € = (&1,&,...,&), [ = (f1, f2,-- -, fr) € D(TY)" and

flg) = | e faya,
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Definition A.1.2 (see Definition 3.3.1 in [42]). Let 0 : Z¢ — C and 1 < 4,5 < d. Let
§; € N be defined by

1, ifi=y,
(07); = e
0, ife#j.

We define the forward difference operator A, by
Ag0(8) = o(§ +0;5) —o(&)
and for o € N we define
Ag = Al ... A?dd

Theorem A.1.1 (see Theorem 3.3 in [9]). Assume that m : T? x Z%" — C is a measurable

function that satisfies the discrete symbol inequalities

Ca
sup [AZ AL AT (2, €1, 6, ..., &) < o] (A1)
z€Td T+ &2+ + 62

for all | = |aa| + |oo| + -+ + |ou| < [2] + 1. Then, the periodic multi-linear
pseudo-differential operator T,, (see Definition A.1.1) extends to a bounded operator from
LP1(T?) x LP2(T?) x ... LP"(T%) into LP(T?) provided that

1
-—=—+—4+...—, l<p<ow, 1<p <
p P P2 Dr

Lemma A.1.2 (see Corollary 4.5.7 in [42]). Let 0 < 6 < 1,0 < p <1, m € R. Let
a: T x R? — C satisfy

le% OG/OC m
}55 afa(Lf)‘ < ) 7€+p|a\75\[3| Vre Tdag e R’ (A.2)
(L+1€?) 2

for |a] < Ny and |B| < Na. Then the restriction @ = a|payza satisfies the estimate
Cf/

|Ag%a(z, )| < aofm
(1+[¢%)

Caaﬁm

erﬂla\ 518

Ve e T ¢ e Z¢
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A.1. DEFINITIONS AND THEOREMS OF PSEUDO-DIFFERENTIAL OPERATOR THEORY

for |a| < Ny and || < No.

In the proof of Lemma 1.3.3 we will need some results from the interpolation theory.

First, let us introduce the needed definitions.

Definition A.1.3. We define a complex strip in the following way:

S={zeC:0<Imz < 1}.

Definition A.1.4 (see [21]). A continuous function F' : § — C, which is analytic in S is

said to be of admissible growth if there is 0 < o < 7 such that

sup 2

2§ €
Definition A.1.5 (see [21]|). Let (2,%,1) be a measure space and let A, ..., &,
be linear spaces. Let us assume that for every z € S there is a linear operator
T, : X x...X, — fo(u), where EO(N) denotes the space of all equivalence classes of
complex-valued measurable functions on €2 with the topology of convergence in measure

on p-finite sets. The family {7}, g is said to be analytic if for any (1, ..., z,,) € X1 x... X,

and for almost every w € €2 the function
Sz T(21, ..., 2m) (W), (A.3)
is analytic in S and continuous in S. Additionally, if for j = 0, 1 the function
R x Q>3 (t,w) — Tjit(z1, ... Tm) (W)

is (£ x X)-measurable for every (z1,...,z,) € X1 X ... X, and for almost every w € Q) the
function (A.3) is of admissible growth, then the family {7}, g is said to be an admissible

analytic family.

The theorem we are about to cite is more general than the stated below. The statement

has been adapted to better fit the case at hand.
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Theorem A.1.3 (see Theorem 4.1 in [21]). For 1 < k < m, fir 1 < qo,q1, Qok, Q1. < ©
and for 0 < 6 <1 define q, q. by setting

1 1-6 0 1 1-6 0

Tk qor Qx4 o ¢

Assume that Xy is a dense linear subspace of L%+ (T?) ~ LU*(T?%) and that {T.},5 is an
admissible analytic family of multilinear operators T, : Xy x - - x X, — L% (T?) ~ L% (T?).

Suppose that for every (hy, ..., hy) € Xy x ... Xy, te R and j = 0,1, we have

Ty it oo o) sty < B0 [ sy - Wy (A.4)

where K; are Lebesgue measurable functions such that K; € L*(P;(0,-)dt) for all 8 € (0,1),

where

e~ ™(t=Y) gin 7

. ., x+iyes.
sin® z + (cos T — (—1)iem(t-v))2 Y

Pj(zx + iy, t) =

Then for all (f1, ..., fm) € X1 x ... X, 0 <0 <1, and s € R we have

1-6 % m
qo q1
[Tysis(frs o o) | pagray < (qo_ 1) (Ch - 1) Ke(s)gllf“qw),

where
log Ky(s) = J Py(0,t)log Ko(t + s)dt + f Pi(0,t)log K (t + s)dt.
R R
Remark A.1.4. For fizred x € (0,1) and y € R there exists constant C,, > 0 such that

|Pj(7 + iy, t)| < Cppe ™ VteR.

A.2. Proof of Lemma 1.3.3

The presented proof follows the original proof in the work of Kato and Ponce [26].
Some of the more calculation-focused lemmas were moved to Section A.3 to provide a
clearer argument. Additionally, in the presented proof term 472 will be omitted in the

definition of J*® to shorten a bit the obtained formulas.
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Proof of Theorem 1.3.3. For smooth functions, any considered infinite series in this proof

will be convergent as the following holds

Com

d d b
Vo e C(T") VmeN 30y such that V6 e Z' |8(6)] < 7w

(A.5)

Let us start the proof by rewriting the expression under the norm using Definition 1.3.5:

T (fg)(x) — FI*(g)(x) = D 2@ (14 [¢2)™ Fo(€)

&ezd

— fla) Y e (14 |nl?)* g(n).

nezd

Now, we use the fact that the Fourier transform of a product is a convolution of transforms

T (fg)(x) = fI(g)(x) = D) @O (14 [e?) 3 fma(e —n)
&ezd nezd
= 2 PTEOf(©) Y P (14 [nP) " ().
&ezd nezd

We change the variables in the first integral on the right-hand side £ = € — n:

J(fo) (@) = FI () (@) = D > e &0 (1 [€+02) " Fn)g(€)

neZd ez

= 3TN e (14 [n2)* f(€)g(n).

neZd ¢ezd

We can rewrite this in the following way

J(f9)(a) — 1.7 (9) (@)
= 3 Y e (L e+ m) " = (1+ Inf®)™?) F(©)am).

neZd ¢ezd

(A.6)

Now, we aim to rewrite the obtained expression as a sum of three terms. To do this we

introduce the following partition of unity: let {®;}3_, < C*(R) be such that

0<®;<1 forj=1,2,3,

P+ Py + P3=1o0n [0,00),
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11 1
supp ®; ¢ (—5, 5) ,  suppd, (E’ 10) ,  supp®3 < (9,00). (A.7)

The value —% in the definition of the ®; actually can be replaced by any negative value.

Now, we can write

S (fg)(x) = f T (9)(x) = j; a;(D)(f, 9)(x), (A-8)
where
o;(D)(f, 9)(x) = ZZ:d EZZ:d T o (€,m) £(€)g(n)
and

s S 1—2
oy(&m) = (L 16 +01%)" = (14 1)) @, (1 : “i’,) |

Let us note that notation analogous to o;(D)(f, g) will be used in later parts for different
symbols. Now, we aim to provide the estimate for each term o;(D)(f, g). For the reader’s

convenience, each estimate will be obtained in a separate subsection.

A.2.1. Step 1: Estimate of o,(D)(f,g)

We start with the transforming function o (£, n) in the following way

vo (L€ + 0\ L+ €
o1(&m) = (1+ [n?)"? ((#) - 1) . <1 + ||77||2>

— (1+ )" ([1 + (14 ) e+ 2] - 1) 1 Gi—:i'lz) '

Our goal is to show that oy after some transformations satisfies condition (A.1). However,
checking condition (A.1) can be troublesome, and instead, we will verify condition (A.2)

and use Lemma A.1.2. It is easier to check first condition (A.2) for (£,7) such that

i_ﬂi"z < % (compare with (A.7)). Now, we perform the Taylor expansion of the term
[1+ (14 |n2)"%E € + 2] To do this we recall that (1+2)® = Yo (9)at for |z| < 1,
where (‘Z)‘) = Hizl O"TT“, (‘S) = 1. Indeed, based on Lemma A.3.1 from Section A.3 and
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the fact that H: ||2 < § we have that |(1+ [n]?)7'(€, & + 2n)| < 1. Thus we may write

o (&m) = (1+n?)"? [Z <812> (14 [nl*) 77 €+ 2m)" — 1] ®y G 1 ;i:i)

r=0

8/2 S/4—T T 1+|£|2
-3 (1) eyt e (5 ).

Now, we aim to reformulate the terms under the sum. Let us recall that

(L)) = (L+ 0T g(n),  (2F)(€) = ££(6). (A.9)

Thus, for (£,n) such that iiﬂz < 5 We may write:

F(©a(mai(&,m) Z<017~, Of) (€T g)(n)
(A.10)

= (@1(&,m), (OF) ()" g) (n),

where

e = () e s s e e (1) A

1+ [nf?

For (£,m) such that iill ‘; =5 L things are simpler:

a1(&,m) f(€)an) = 0- f(€)a(n) =0, (@) (YT g)(n)
= (@1(&,m), @F)(ENT " g) ().

With this, we can conclude that

0 CLHEP 1
e { Siions(En) for (€n): i <4 .

0 otherwise

As mentioned before, we will show that for each r function oy, fulfils condition (A.2) up
to some number of differentiations k(d) € N. We will analyse o4 ,. step by step. Let m > 0.

Then, based on Lemma A.3.3 from Section A.3 let us observe that for o; € N such that
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d
D1 0 = m we have

o [(1+ o))

o o <C(l+r)™1+ |77|2)_’”+1/2_% vn e R4
6"71 CEY a’r]d

1+]¢?
1+[n|?

Using the assumption < % we can write

o [(1+ Inf?) 7]

[0%] (6%}
oo

C(L+r)m
TR )% (L ()

1 2
HlEE_1
L+n* 9

(A.13)

V() :

Now let us focus on the term (£,& + 2n)" " '(&, + 2nx). Let oy, 3; € N be such that
3% (ay + B;) = m. Based on Lemma A.3.4 from Section A.3 we have

o™ [{€, € + 2" (& + 2mi)]
0Lt .. agion ... ond

w (TN (L4 n2)2 LfeP 1
<C(1+r) <9> (1+’§|2+|n’2)% V(f,n).1+|n|2<9.

(A.14)

Now we will handle the last term in the definition of oy ,. From Lemma A.3.5 from Section

A .3 we have that

m 1+[¢?
oo ()] | _ c
Ogr .- 0giom ot | (L+IEP+ )2

V(&) e R (A.15)

Thus based on (A.11), (A.12), (A.13), (A.14), (A.15) and Lemma A.3.2 from Section A.3

(o)

The sum on the right-hand side is finite based on the D’Alembert criterion for series

we can finally write

am51 (777 g)
et agion ... o

0
EZ
2

(1+ |§|2+ |77|

convergence. Indeed we see that

()| @+nm @)™

T
(D@

— < 1.
r+1 r+1 9

s/2—(’r+1)—|—1‘(r+2> roo 1
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Based on Lemma A.1.2 we have

C(m,s)
(L + 5+ n?)

]Ag; . Ag;Afj; . Aﬁgal(g, n)| <

-
From (A.10), (A.12) and Theorem A.1.1 we have

lou(D)(f: ), = |71 (D)@f, I )], < Clofl,, |7 ], (A.16)

A.2.2. Step 2: Estimate of o3(D)(f, 9)

Now we will consider the term o3(D)(f, g). Firstly, we define

2
oua6on) = (1+ I+ )" - 1) @ (150 (A17)
and
2
ouatson) = (L) = 1) o (1), (A1)

We clearly see that o3 = 031 — 035. Based on (A.9) it follows

03,1(§,n)f(§)§(77) =

(L+]€+nP)" -1 (1 + ¢
(+[g»)7 AL+ InP

) FH©a.  (A19)

Now we have to show that

2
o) = (L+IE) 7 (g et - ) (THE) aaw)

fulfils condition (A.1). As previously, we will show that condition (A.2) holds and deduce
(A.1) from Lemma A.1.2. As before we will split our considerations into two cases: for

(&,m) such that ﬂ“gllz > 9 and the opposite. We start with the prior case. Based on

Lemma A.3.3 from Section A.3 for «; € N such that Zle o; = m we can deduce the

following

o [+ [¢) "]
oo

wl3

Vé e RY.

< C(s,m)(1+ €))7 (1+ |¢)*)~
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1+¢2

T 9 we have

Using the assumption that

o[+ g7
g g

_m
2

1+ [EP?
1+ n?

> 9.

<CO+ 1P (1+ 1€ + nP) V(& m)

(A.21)

By using Lemma A.3.6 from Section A.3 for oy, 3; € N such that Zle(ai + B;) = m we

have

o [(1+ |+ n?)¥? - 1]  m 1+ |¢|?
SCA+EP+ P22 V() : >9.  (A.22
AL O% gt L. On (el =+ nl) (&m) 1+ [nf? (A-22)
By employing Lemma A.3.5 from Section A.3 we get
om @3 1+]¢?
[ (1+|n|2>] - ¢ (A.23)

™.
2

Ogt .. ogtont L ont T (L+ €+ ()

Collecting (A.20), (A.21), (A.22) and (A.23) and by using Lemma A.3.2 from Section A.3

we get
é’mcr;:l
gt ogon! .. o

1+ €7 + |n]? o2 2 n—2 1+ [
<o (=8P TIEY g E () 9
(FEE) e 1) e s e >

We see that thanks to ii;f}'; > 9 we have

1 2 2 2
el P 110
1+ [¢]? 1+ [¢]? 9 9

and thus

m %
d"o54

o8t ... agaon .. o

14 ¢
1+

<CA+MP+1E2) 7% VEn)
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The obtained formula is also valid in the case of +|n‘\ < 9 since supp @3 < (9,00). Thus

based on Lemma A.1.2 we can deduce

Ca
al+8]

PANSAVCYANC Aﬁda (&n)| <
&1 13 1 3,1
o (14 [€]2 + [n]2) 2

for all & = (au,...,0q) € N4 B = (By,...,53s) € N Finally from (A.19) and Theorem
A.1.1 we get

los 1 (D)(f,9)l, = |o52(DYT*F, ), < Clgly, 17 £1,, (A.24)

Now let us proceed with o3,. Before we start let us observe that o35(£,0) = 0. Let
us define auxiliary smooth function ¥ such that 0 < ¥(x) < 1, ¥(z) = 1 for x < 3/4,

U(z) =0 for z > 9/10. Then we can rewrite (A.18) in a following form

032(&, U)f(é) (n)
ereer ><n, (@1 71g) () @ () for (€om) s i =9
g |

<O,( ><O (GJs 1 ) )> otherwise ’
(A.25)
where
(Gh) (n) = g(m)h(n), (A.26)
Ly (14]n2)"? 1 1 .1 9
g(n) = Il e Y <1+In\2> forn: mogp <10 (A.27)

0 otherwise

The purpose of the term ¥ (ﬁ) is to cut-off region near n = 0, without affecting values

for n € Z\{0}. We see that in view of Lemma A.3.5 from Section A.3 we have

m 14+ [¢f?

0 [@3 (JW)] c

a1 g AB1 Ba < 5 <A‘28)
Oet ... Ogaon! .. Ond | (L+In>+1¢2)2
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With the use of that fact that HEE > 9 (which implies that |¢| > 24/2), we also see that

C
(14 [n]* + ¢

o [1€17%]
0Lt .. ogion ... ot

<ClEItm g (A.29)

m+1 *
) 2

We see that

o™ [1€1m€; @3]
o8t .. agaon ... o
O [IE77E P (@) oM [€] €55
gt ogtant . ons N L)oo ageagt . onlom T oL ot

= Nk

Thus we see that by (A.28), (A.29) and Lemma A.3.2 from Section A.3 we can calculate

C
x m .
2

(1 + [n* + [€]?)

O™ [€]7 %€, ]
gt ogon! .. o

We see that based on the above, (A.25), Lemma A.1.2 and Theorem A.1.1 we may con-

clude

los2(D)(f.9)ll, < Clofl, [GT ], (A.30)

Now we need to derive the estimate for |G.J*""g[ . We see that by using Lemma A.3.3

from Section A.3 we have

om [(1 + |?7‘2)1/2—s/2]

aq aq
oo o

< C(1+ [p)VEs2=m2 vype R (A.31)

Similarly by virtue of Lemma A.3.3 from Section A.3 we have

o [(1+ [nf*)*?]

aq ag
os o

<C(1+[pH*™2  vneR™ (A.32)

Also, we have

m+1 ]_

m -2
Pl A < et <o) vpere

[e5} g
(9771 . .. a’]’]d

9
2 (A33
e ~100 A3
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Applying the same reasoning employed in Lemma A.3.5 from Section A.3 we get

- [\D <ﬁ>] <C(1+ |n|2)‘% Vn e RY. (A.34)

aq ag
anl DRI 61’](1

We see that based on (A.31), (A.32), (A.33), (A.34) and Lemma A.3.2 from Section A.3

we get

g ARl (et 1 9 9 .

1+ n*) 2.
O O )

From the above, (A.26), (A.27), Lemma A.1.2 and Theorem A.1.1 we have

= | ) € gmh(n)| < Chl,, -

p2 ngZd

jcnl,, = | (1cm)]

p2

Thus we can conclude based on (A.30) we have

los2(D)(f.9)l, < Clofl,, [ ], (A.35)

Thus using (A.24) and (A.35) we obtain

los(D)(fs ), < C (161, 17 gl,,, + gl 17°F1,, ) - (A.36)

A.2.3. Step 3: Estimate of 05(D)(f,9)

Now we have to estimate

2
oa(&m) = (L 16 +0P) 7" = (Lt [nP)"”) @, G : |'§||2> |

To do this we introduce two new functions

s 1+
21 (&,m) = (1+ ¢ +n?)"? @, (1 1 :757‘\2) : (A.37)
2
022(§,1m) = (1 + ’77‘2)8/2 d, (1 i :5;2) . (A.38)
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It is clear that o9 = 091 — 022. We see that the following holds:

a6 (©a0) = (14 10" (L4 16R) " 2a (155 ) (it

Recalling that supp &, < (i 10) and using Lemmas A.3.3, A.3.5, A.3.2 from Section A.3

10°

combined with Lemma A.1.2 and Theorem A.1.1 it is easy to see that

lo22(D)(f; 9), = [a22(D)(J°f, 9), < Clgl,, [°F1,, - (A.39)

Now we have to provide the estimate for oy ;:

1+|£|2> :

021 mF(©am) = (1+1¢+0*)" (14 1)~ @ (1 i) O

(A.40)

= T21(&m)(J° ) (€)g(m)-
As we see in the formulation of Theorem A.1.1, condition (A.1) has to be valid up to some
number of differences taken. Let us denote this number by k(d). Now, let us analyse the
case where s/2 > k(d). We try to proceed in the case of 75, in the same way as in the
case of 9 5. Thus we try to validate the assumption (A.2) in Lemma A.1.2. While doing
so we may have to estimate negative powers of the term 1+ |£ + n|?, which is problematic.
This is not the issue when s/2 > k(d) and calculations can be performed similarly to
T2 (thanks to Lemma A.3.6 from Section A.3). We will apply the complex interpolation
method to obtain the estimate in the case where s is not so large. Thus we extend the

definition of &5 1, 021 to complex values:

z —z 1 2

Taen = (e et (ele) e () (ay
2 1 2

ia(&m) = (L+ g+ )7 @ (1 j: ;512) , (A.42)

such that 0 < Rez < 2k(d). If we choose z = 2k + it we can conclude using (A.41),
Lemmas A.3.3, A.3.5, A.3.6, A.3.2, A.1.2 and Theorem A.1.1, that for 1, ¢ € C°(T%) we

have

|72 (D) (0, 0|, < CW) [, 11, (A.43)
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where C(t) = C - (1 + [t|)* (this factor is the result of k(d) differentiations present in
Theorem A.1.1). Now we need to establish a similar estimate in the case of z = it. To

this end, we observe that (based on transformations that lead to (A.8)) we have
. 3 .
R COEDWAIICRDE

=1

where

it it 1+ £
e = (e af) o, (150

We want to obtain an estimate of Eéfl (D)(¢, 1), however, it is easier to start with obtaining

an estimate for of,(D)(¢,¥):

oy, (D) (¢, 0) = K¥(D)($,0) = J"(¢1h) — &}/ (D)(,¥) — K5 (D)(¢,7)). (A.44)

Now we need to derive estimates for each term on the right-hand side. First we will

concentrate on x4 (£,n) for j = 1,3. It follows from Lemma A.3.6 from Section A.3 that

o [(1+ € +n*)"?]
oor . ooaght o

_m
2

L e g, L EP 1

> or .
1+ nf? L+n* 9

<C-(1+[th™ (1 + n|* + |£\2) for

By Lemma A.3.5 from Section A.3 we have

om | @ 1+|§|z N
— [ Jaglgllnl )Ld <C (1 n |77|2 + |§|2)—7
o goagh o

Thus Lemma A.3.2 from Section A.3 implies

am Hi't(gvlr]) _m .
- [J o ] o | <O+ [t)™ (1 +[nf+1€*) * forj=1,3.
Ont « . OpdOnt ... On§
Based on Lemma A.1.2 and Theorem A.1.1 we have
[(D)(6, )], < CO+[e)* [, €], forj=1,3. (A.45)
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Now we will provide an estimate for J(¢1)). We see that for h € C°(T?) we have

JHR) () = 3 e (1 )" hin).

nezd

We see that in view of Lemma A.3.3 from Section A.3 symbol (1 + |n\2)it/ ? fulfils as-
sumptions of Lemma A.1.2 and thus the assumption of Theorem A.1.1. Consequently, we

have

| 7R, < CA+[th* A, (A.46)

From this we easily get

[T (o), < CQA+ 1D [, 9], - (A.47)

Thus we see that by (A.44), (A.45), (A.47) we have

|o22 (D) (@, %), < O+ [t)* [, 4],

Based on (A.41), (A.42) and (A.46) we have

7, (D)6 0], = o (D)6, 00|, < CC1+ [t 6], 19,
In order to use Theorem A.1.3 we need to show that the family of operators {Egyl(D)}Zeg
is an admissible analytic family. According to the Definition A.1.5 we can verify the

conditions for smooth functions (which are dense in LP, 1 < p < ). Let us choose two

functions 1, ¢ € C°(T?). We clearly see that

1+ [¢]?
1+ |n|?

Sazr— 3 ETE (L fekaP) T (14 ) @y <

eezt:|k|<n
neZ:|k|<n

) HEVi)

is analytic, because functions of type S 3 z — 3?2, f € R, are analytic. We will show

that the expression on the right-hand side converges uniformly. Indeed, we see that using
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(A.5) we have

2

2\ . ~
e27rix(§+77) (1 + |£ + 77|2>Z/2 (1 4 |£| ) 2/2 (1 + |£’ ) ¢(§)¢(7]>‘

1+ [nf?
€mezd A 2 o, 2 c, (A.48)
w n)’ < C d+1 d+1 < 0.
= nez oL+ D)% L+
Thus it is easy to see that
TizT z 2 1+ |€|2 in 7
S e (e aP) (L) e (1L ) bt
d. n
M A (A.49)

n—o0

= 6;,1 (D) (¢7 ¢)

Thus, we can conclude that 73, (D)(¢,¢) is analytic for any ¢,¢ € C*(T?). Using the
same approach we can show continuity of S 3 z — 751(D)(¢,v). We will only apply
Theorem A.1.3 to one of the variables of 75 ,(D)(#,%). To show that condition (A.4)
holds, we verify that C(1 + [t])** |4, € L'(P;(6, -)dt) for j = 0,1 (the interpolation with
respect to the first variable). It is obvious based on Remark A.1.4. Thus using Theorem

A.1.3 we can deduce that for 0 < s < 2k the following holds

H021 H C”@Z}Hpg HQZ)HM-

Now recalling (A.37), (A.40) and (A.41) we have

loa1(D)(f, 9, = [F32 (D) f.9)|, < Clgl,, 7 £,

The validity of the above inequality in case s/2 > k was already justified in reasoning

that lead to (A.43). Thus using the above and (A.39) we obtain

lo2(D)(f, ), < Cllglly, 1751, - (A.50)
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A.2.4. Conclusion

By combining (A.8), (A.16), (A.36) and (A.50) we get

17:(£9) = 1T ()], < C (10F1,, 17 g1, + gl 1°11,,) -

A.3. Auxiliary lemmas

The following lemmas were used in the proof of Lemma 1.3.3.

Lemma A.3.1. Let &, n e RY such that

1+[¢]2
+ln

TE <9 , then

7
|1+ nP?)7HE €+ 2m)f < 5 (A.51)
Proof of Lemma A.3.1. We have

R IS N S

L+ n?) 71 €+ 2 .
(P e 2 < B e < T Y

Using the fact that 11:512 < 5, we have

1+ Py g2 < f+2gfE =T

]

Lemma A.3.2. Let N € N, d € N,. Suppose that 01,0, : R — C are two symbols
satisfying

CiFi(S)

020:(6)] < n
T e e

VéeU c R? (A.52)

for all a = (ay,...,aq) € N such that |a| < N and F; : R? — Ryy. Let us define

0 = 0105. Then for all o € N¢ such that la| < N there exists constant C,, such that

CoF1(&)F>(§)
(1+e2)
186
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Proof of Lemma A.3.2. Let us set a = (ay,...,aq) € N? such that |a| < N. Now we

calculate

ol |0102 Z Z ay aZilki[gl] @\QI*Z?AM[@]
R k) Gl

&d k1=0 kqg=0
By the assumption (A.52) we get

Z Z( ) (kd) (Cal ~~~~~ 2uf18) Oy kF@)

b0 R L e300 (14 et

aq ag g
NG 65 () (2t

‘é’ 2 = kq=0

8' ‘ 0'10'2
O, - (?O‘d

Lemma A.3.3. Let s€ C, me N and {ai}?:l e N¢ such that Zle a; = m. Then, there
exist N e N, {w; ;)70 e NIV (g 3N e NN {C}Y, € CN such that

1,)= 1
o [(L+ )] i
(1 + ne A.53
&07411 agj ; ‘77| d ( )
where Yi € {1,...,N} 0 < k < m, 2k - ijl wij = m and

|Ci(s, 001, .., aq)] < C(m) - (1 +|s])™. Also, we have

" [(1+ n*)°]

(031 [62)
aqh e &nd

< C(m)(1+ [s)™ (1 + [n*)e"%

Proof of Lemma A.3.3. We will prove the representation formula (A.53) using the induc-

tion method. Let us observe that

[+ [n*)°]

IS = 2s(1+ [yl

b

and thus formula (A.53) holds for one differentiation. Now we assume that it holds for

a certain number of differentiations and will try to deduce its validity after additional
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differentiation. Indeed we have

oA+ [nl?)°] ki
por oot g0 0y, ZC + 1) 1ol

Ong -- . Op 77]2 1
s— Wi, w; j+1 Wy,
—220 s — ki) (1 + |n|?)s~ kit Dy oo, R
Nm
wz w; i—1 Wy,
—l—ZC’ (L ) Fmy™t oo g
=1

We observe that 2(k; + 1) — ijl wij—1=m+1and |Ci(s — k;)| < C(1+|s])™*1. Thus
we proved that (A.53) holds. Now it is easy to verify that

W e

C(L+ [s))™(1 + In\z)R“Z

= (LA nf?)*
X 1vd
< C(1+ |s)™(1 + |77|2>Res Z(l I ’n|2)—ki+§zj:1m’3

i=1

C(L+[s)™(1+ [nf?)fe=%.

o [0+ nf’)]|

aq ag
a’r]l DI and

Lemma A.3.4. Let r € N, m € N and {ai}le,{ﬂi}le e N? such that
S (i +Bi) = m. Then, there exist N € N, {w”}fvjidl e NVx2d (gl e NV,
{CY | e RN such that

O™ &€+ 2m)" 1 (& + 2me)]
gt .. ogan! .. o

ZC<€ € oy TITRig g et (AL54)

Moreover, fori=1,...,N we have 0 < k; <m, r—1—Fk; =0, 2ki—23d1w” =m-—1
and |C;| < C(1 + r)™. Additionally, there exists C independent of r such that for

1+)¢)2
(& m) - 1+||f]\2 < § we have

O™ [€€, €+ 2m)" (& + 2]
gt ... ogon! .. o

< CL+7)m <z> (L+ Inf) =
h 9) (A+[ER+ )T
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Proof of Lemma A.3.4. We will prove this statement via induction argument. We see

that for one derivative we have

AEE> 207220 _ 1 1)ce €4 amy=2(06, + 20,) (6 + 2m0)
&

+ (& €+ 2n) oy,

O, €+ 2m)" " (& + 2mk)]
0

5

= (r = 1)(§, & + 2n)"726;(&, + 2m1)

+ 20,6+ 20)" oy

We see that the above results of differentiations match the form of (A.54). Now, we make

the induction step

OmLCE €+ 2y (& + 2m)] 0 (Nm T e
« ’oz~ Q 1 = 5 C’l<€7€ + 277>T ’ sz’knklyd+k
.ot g o g ; Bl

N
_ Z QOZ(T‘ 1 kfz)<§,€ + 2n>r—1—(lci+1)<§j + nj) 41/-)2‘,1 o ;’i,dnblvi,dﬂ N 'nf;i,zd
i=1

N
—1—Fk; cwi, i,5—1 i, i, i,
+ ) O E 2y iR g,
=1

We see that 2(k; +1) — (Z?il w;j+1) = (m+1)—1and 2k; — (Zjil wi;—1)=(m+1)—1,
thus postulated equality (A.54) holds. In the same way we get equality for %.

Now, we will prove the inequality stated in the lemma. We see that

O™ € €+ 2m)" (& + 2me)]
gt .. agon ... o

Nm
—1—k, 4 i 2d
< O(L 7)™ K€+ 2l g Rmn ena g 2o na,

i=1

We modify the right-hand side in the following way

0" (6,6 + 20" (6 + 201)] ‘
gt ... agaan . o

2d
77|Zj:d+1 Wi,j |

<o+ 3 (LEEIDNTR T ) gt

AT 1+ 9
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Based on the fact that r — 1 — k; > 0 and on Lemma A.3.1 we have

O™ [C€, €+ 20)" (& + 2n)]
0Lt .. agion .. o

r 1 Nm 2
<Cm)(L+nr)" <g> (1 + |77|2)T7§ ; €] T

d 2d
1 Wi, n|2j:d+1 wi, j

)ki+%

1+]¢?
1+[n|?

Using < % we have

0" [(6.€ + 20 &+ 200)]
gt ... 0% .. o

N L e
<o+ (5) @)Y o
’ S ek )t

Now using the fact that 2k; — Z?dzl w;; =m—1 we get

O™ (€, €+ 2m)" (& + 2e)]
gt agaan .. o

< C(m)(1+1)" (

m -
2

Z)T (1 + [nf2)
9) 1+ + nP)

Lemma A.3.5. Let m € Ny and let {o )L, , {Bi}"_, € N% be such that 30| (o + ;) = m.
Let ® € C*(R) be such that supp 52 < [a,b] for some a,b> 0. Then we have

om | @ 1+|E\z -
il )| N TR a55)
61 PR £d ”71 AR nd

Proof of Lemma A.3.5. First, we will show that there exist N € N, {w”}fvjidl e NVx2d
(kN {/@Qﬁil , {/im}l.]\il e NN, {C;}Y | € RY such that derivatives can be expressed in

the following way:
m 142
o [ @ ()|
¢t ogion ... ond

Nm, -
= Z C@(kz) ]- + |§-|2 (1 + |§|2> M Wi 1 Wi d Wi d+1 Wi 2d
ST ) (o pPyrecrre™t rne Tl

(A.56)

2d .
where 1 < k; < m, 2r;¢ — Zj:l w; j = m. We see that for m = 1 such a representation is
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valid. Now we assume that the formula holds for some number of differentiations and we
will check if the formula is still valid after additional differentiation. We start with the

differentiation with respect to ¢;:
+1 1+]¢)?
- [‘I’ ()]
+1
g;...ag‘; L0gion! ... o

Z it (LEIERY (Al gy ians i
. 1 + |77|2 (1 + |T]|2)Ni7§+ﬁi," 1 0 Gq 1 e

After carrying out the differentiation we get

+1 1+1¢]?
ot | (355) |
R A A N

N
focpten (LEIEEY (Lt e o
= ' 20,pki+1) e
; L+ n2) (1+n?) ’%éﬂmﬂrlg] H5

Nm 2 /i
1+ 1+ SO w w
+ E C’ﬂm,n@(ki)< <l ) ( ( |€| _1f]| |f o ”Hk

2 1 1 2,7
Pt L+ nf? ) (1 + [n[?)retttnin

N, d

5 ot (LEEE) (Lt g -
+ C’sz @(k/‘z) 1 ik i d+k
2,0 (T3m) e L1670

The obtained formula matches the structure from equation (A.56). Now let us check the

validity after the additional differentiation with respect to 7;:

o o (155

... aajaﬂl Lot o

Ny, N
Z O 1 + |£|2 (1 + |€|2) M Wi, 1 wi’d/r]wivd"’l ,rlwi,2d
1+1n|2 /) (1 + |n|?)rictrin 1 --+Sqg T Sy

5
2

After carrying out the differentiation we get

o (5]

oo oot o

(/5
_ %(—2)0-@(&-&-1) 1+ |£|2 (1 + |£‘ H“]—H ngzk Wi d+k
=t L o) (T Py Tt

N
U . 1+ 2 1+ K/ln Wik wzd+k
t Z Ci(=2) (R + Fig)OH) ( i ) ( Sl iy N H5
=1

L+ [n[? ) (1 + [pf?)reerttr
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N,

. 5 L+ € 1+ [€[?)rm Wi,
+chwl,d+j(b(kl) ( ‘5’ ) ( ( |£‘ _11_[6 ik zd+k

i=1

T+ [P ) U+ [p2yrecten

Again we see that the structure of (A.56) is preserved after differentiation. Now, we can

finally prove the estimate (A.55). First, let us observe that

om [(I) (ii|f|2>:| ) )
s L+¢ 1+ ¢

a1 ’30¢d 2 5| =0 for (&m) : 1 5 < aor N 5 =
(351 ) (37]1 -+ - Ong + |77| + |77‘

and thus we will focus on the case when a < Lt+[E)” < b:

wi,1 Wi, d wi,d+l Wi, 2d

-Sqa Th Mg

e ()] | C%(mra% .

e A L [n[2)reetion

=1

(1+ €[? + [n[2)z Za=r s
(1+ |n[? )“%5

<OZ

i=1

Now we use the inequality

1 1 1
Lt > 5 () + g (4 16) 2 min { oo (I 4 6P)

DO | —

to obtain

()] | v
s b(~2m e+, i
— ~ - <02(1+|£‘2+|7]|2) ( Let2ie, )
g oo op| 4

m
2

C(L+1ef+ %)

Lemma A.3.6. Let s € C be such that Res = 0, m € N, and let {ozi}le : {Bi}?:l e N4
be such that 0 (a; + ;) = m. Then there ewist N € N, {w”}fvjidl e NIV (k3N e NV,
{Ci}ﬁil e CV such that

a 1 + 5 + 77 s— UJ,L Wi W; wj
oo : acxd‘aﬁl o aﬁd ZC YL+ €+ nP) Rt g6 (AT
g O Om -+ Ona

i=1
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where Vi € {1,...,N} 0 < k; < m, 2k; _Z2d1ww = m and |Cy(s)] < C(1 + |s|)ki

Moreover, we have

o [(L+ [€+ )]
o8t .. agion .. a8 S

C(L+[s)™ (1 + [ + )% V(E,m)el,  (A58)

where U = {(5 n) : 2 >9 or 1+||fz‘\2 < é} If Res —m = 0, then inequality (A.58)
holds for (&,m) € de.

Proof of Lemma A.3.6. The representation formula (A.57) can be obtained in the same

way as in Lemma A.3.3, thus we will concentrate only on the inequality. We get

Np,

Lt Inf? + Jef?
1 +
sD™ Z A+ e+ P

m Res+1 Q-ilwqb',j
o[+l +n) | _ yesta 2

- (A.59)
gt ogan . o5 S

Let us observe that from 1+ [£]* > 9(1 + |5|?) we can derive —3+/[€[> —8 < —|n|. Thus

we have
L+ |E+nP =1+ + |nl* + 2<€ n =1+ !é“|2 + [nl* = 2/¢In|
> 1+ [+ |n* - |§|v|€|2 (1+|§|2+|77| )
Hence
o [(1 + |§ + 77| ) ] i Res—%(?ki—zzd_ w;,j)
e <O+ s Y (L + Il + €P) sms)
a’h --'and 6771 . aﬂd =1

Using the fact that 2k; — Z?il wi; = m, we get the desired inequality. The other case
1+ £ < 5 (1+ [n[?) is analogous. Now, let us assume that Res —m > 0. Thus from
(A.57) we have

[+ E+nl*)T | _
oLt ogont .. o S

N 52
O+ 5™ Y (1 [€ + nf)es (1 [l + ) 2557
=1

As k; < m we see that Res — k; > 0 and thus we have

N _1 ._\2d .
C(L+ sy DT (1 + [pf? + J¢?) ooz @R m2men),
=1

[+ € +nl*)T | _
gt .. agaon .. o8| S
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Again, using the fact that 2k; — )|

2d
j=1Wi.j

= m, we obtain the desired inequality.

]
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